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1 Introduction

Inflation has a way of turning abstract macro debates into small, daily decisions. When
prices move slowly, households can postpone choices and treat money as a quiet convenience.
When prices jump, the same households start doing arithmetic in the supermarket aisle:
which items can wait, which bills must be paid this week, and whether the cash sitting
in a low-interest account is losing value faster than expected. That kind of “kitchen-table”
inflation is not only about the average price level. It is also about who is holding what assets,
who can adjust their portfolio quickly, and who is forced to rely on cash-like instruments
to smooth consumption. These questions have become harder to ignore in economies with
aging populations, segmented financial access, and renewed tension between fiscal needs and
monetary credibility.

A large body of research treats inflation as a wedge: it raises the opportunity cost of
holding money and distorts intertemporal allocation. Classic measures of the welfare cost
of inflation focus on the area under money demand and interpret inflation as a tax on real
balances (Bailey, 1956; Friedman, 1969; Lucas, 2000). Public-finance work emphasizes that
this “inflation tax” is not just a lump-sum burden: its incidence depends on the instruments
households use for transactions and saving, and on the feasibility and cost of alternative taxes
(Phelps, 1973; Chari, Christiano, and Kehoe, 1996). At the same time, the distributional
side of inflation has long been visible in balance-sheet data: unexpected inflation revalues
nominal claims and redistributes wealth across cohorts and across holders of nominal assets
and liabilities (Doepke and Schneider, 2006). In cross-country data, inflation and inequality
often move together in ways that suggest political and fiscal conflict, not only monetary
mechanics (Albanesi, 2007). A related theoretical perspective highlights that inflation can
act like a regressive consumption tax when high-income households can substitute away from
money more easily than low-income households (Erosa and Ventura, 2002).

The distributional question becomes sharper once we move away from representative-
agent benchmarks. In heterogeneous-agent settings, monetary policy affects households
through multiple channels: income and employment, asset revaluations, and heterogeneous
exposures to interest-rate movements (Auclert, 2019; Gornemann, Kuester, and Nakajima,
2016; Kaplan, Moll, and Violante, 2018). Empirically, monetary contractions tend to raise
measures of income and consumption inequality (Coibion et al., 2017). And even in reduced-
form consumption models, it is useful to distinguish forward-looking households from “rule-
of-thumb” households that track current income closely (Hall, 1978; Campbell and Mankiw,
1989; Gaĺı, López-Salido, and Vallés, 2004). These observations motivate a simple but im-
portant point: evaluating inflation and taxation requires a framework that can keep track of
heterogeneity in saving technology and liquidity needs, not only heterogeneity in preferences.

This paper provides such a framework in a deliberately transparent environment. We
build a two-period overlapping-generations (OLG) model in the tradition of (Samuelson,
1958; Diamond, 1965), with competitive production and capital accumulation. Households
are born young, work when young, and retire when old. There are two types. “Ricardian”
households have access to the capital market and can invest in physical capital; “Keynesian”
households are financially excluded and can save only through money. The distinction follows
a long line of work that uses limited asset-market participation and cash-like instruments
to capture liquidity constraints and incomplete insurance (Bewley, 1986; Huggett, 1993;
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Aiyagari, 1994; Krusell and Smith, 1998; Imrohoroglu, 1992; Akyol, 2004). To make money
essential, Ricardian old-age consumption is subject to a cash-in-advance (CIA) requirement:
a fixed fraction of old-age consumption must be financed with money balances. Cash-in-
advance constraints are a standard way to formalize the transactions role of money (Lucas
and Stokey, 1987; Cooley and Hansen, 1989), and they offer a tractable bridge between mone-
tary policy, portfolio choice, and real allocations. The framework also sits naturally alongside
monetary models that generate money demand from explicit trading frictions (Lagos and
Wright, 2005).

Policy is summarized by two instruments. First, the central bank sets a constant money
growth rate. Second, the fiscal authority levies a proportional tax on capital income received
by old Ricardian households. Importantly, the government rebates all monetary and fiscal
revenues as lump-sum transfers to old Keynesian households. This rebate rule is deliberately
stark: it isolates the incidence of inflationary finance and capital taxation when one group
relies primarily on money and the other has capital-market access. It also mirrors the
practical policy question faced by many governments: if redistribution toward liquidity-
constrained households is a priority, should it be financed by inflation (seigniorage) or by
explicit taxes on capital income, and what happens to aggregate saving?

The model delivers three central results. First, higher money growth (and therefore
higher steady-state inflation) reduces steady-state capital accumulation whenever the CIA
constraint is binding. Intuitively, inflation raises the effective cost of meeting the liquidity
requirement in retirement and crowds resources out of productive capital. Second, inflation
tends to raise old-age consumption inequality: households that are forced to rely on money
bear a larger inflation burden, even when they receive transfers. Third—and more surpris-
ingly relative to representative-agent intuition—a higher capital income tax can increase
steady-state capital accumulation in this segmented economy, because the interaction of re-
bated revenues with the liquidity wedge generates a strong income/portfolio channel that
can dominate the usual substitution effect. This channel is inherently heterogeneous and
depends on the joint presence of financial segmentation and a binding liquidity requirement.
These positive results are then embedded in a Ramsey problem where a planner chooses
(η, τk) to trade off capital deepening against redistribution. Under weakly pro-Keynesian
welfare weights, the optimal policy features a strictly positive capital tax and an interior
(finite, positive) money growth rate: neither deflation nor very high inflation is optimal.

The paper contributes to several literatures, and it does so with an emphasis on closed-
form clarity. First, the model links two classic policy instruments—inflationary finance and
capital income taxation—to the same distributional object (old-age consumption inequality)
in a setting where households differ in saving technology rather than only in endowments
or shocks. This complements work that studies the welfare cost of inflation (Bailey, 1956;
Lucas, 2000), the incidence of inflation through portfolio composition (Erosa and Ventura,
2002; Doepke and Schneider, 2006), and the macro effects of heterogeneity (Bewley, 1986;
Aiyagari, 1994; Krusell and Smith, 1998).

Second, in representative-agent models, taxing capital typically depresses saving and
lowers the steady-state capital stock, and in long-horizon optimal-tax models the optimal
capital tax tends to zero (Chamley, 1986; Judd, 1985). In contrast, this paper shows how
capital taxation can raise capital accumulation in a stationary equilibrium once one intro-
duces a binding liquidity wedge and a targeted rebate scheme. The result is not a knife-edge
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curiosity: it emerges from a clear interaction between (i) the need to hold money for old-age
transactions, (ii) the limited portfolio set of the financially constrained, and (iii) the fact
that fiscal and monetary revenues are rebated to the constrained group.

Third, the Ramsey problem in this paper is built to be interpretable rather than ency-
clopedic: the planner chooses (η, τk) and internalizes how each instrument moves both the
capital stock and the transfer-backed consumption of constrained retirees. This speaks to
the broader tradition of optimal policy with monetary distortions (Ramsey, 1927; Phelps,
1973; Chari, Christiano, and Kehoe, 1996) and to the fiscal-monetary interaction empha-
sized by “unpleasant” arithmetic arguments (Sargent and Wallace, 1981). The paper also
clarifies how the optimal mix adjusts when the government is given an additional instrument
(such as public debt or a consumption tax), connecting to the OLG public-finance tradition
(Diamond, 1965; Auerbach and Kotlikoff, 1987).

A final, practical contribution is that the framework can be disciplined with transparent
calibration. To give the mechanism a concrete benchmark, we calibrate the model to match
broad Australian macroeconomic features (population growth, a long-run real interest rate
target, and an inflation target), and we use comparative steady-state exercises to visualize
how (η, τk) move capital intensity and old-age inequality around that benchmark. While the
paper is theoretical, the calibration helps anchor the magnitudes behind the key trade-off:
inflationary finance is a blunt redistributive tool when the poor rely heavily on money-like
assets.

The paper draws on and connects several strands of work. The OLG structure follows
(Samuelson, 1958; Diamond, 1965) and the broader view that intergenerational incidence
matters for fiscal and monetary policy (Auerbach and Kotlikoff, 1987). The monetary side
is rooted in classic models where money is essential because of a transactions requirement
(Lucas and Stokey, 1987; Cooley and Hansen, 1989), and it is consistent with search-and-
communication foundations (Lagos and Wright, 2005). The heterogeneity component is
informed by the incomplete-markets tradition (Bewley, 1986; Huggett, 1993; Aiyagari, 1994;
Krusell and Smith, 1998), and by analyses of inflation in economies where money provides
self-insurance (Imrohoroglu, 1992; Akyol, 2004). On distribution, the paper speaks to work
on inflation as a regressive tax (Erosa and Ventura, 2002), inflation as balance-sheet re-
distribution (Doepke and Schneider, 2006), and inflation-inequality links through political
economy (Albanesi, 2007). It also relates to the modern monetary transmission literature
that emphasizes heterogeneity in exposures and marginal propensities to consume (Auclert,
2019; Kaplan, Moll, and Violante, 2018; Gornemann, Kuester, and Nakajima, 2016), and to
empirical evidence that policy shocks can move inequality measures (Coibion et al., 2017).
Finally, by framing policy as an explicit choice among distortionary instruments, the pa-
per connects to optimal-tax insights about the limits of capital taxation and the role of
alternative tax bases (Atkinson and Stiglitz, 1976; Chamley, 1986; Judd, 1985).

The remainder of the paper proceeds as follows. Section 2 describes the environment,
household problems, and competitive equilibrium. Moreover, the section characterizes the
stationary equilibrium and derives closed-form expressions for capital accumulation and in-
equality. It also studies the Ramsey planner’s problem and provides qualitative properties
of the optimal policy mix. Section 3 presents the benchmark calibration and comparative
steady-state exercises. Section 4 examines robustness and extensions, including alternative
welfare weights, partial capital-market access for constrained households, and the role of

3



additional fiscal instruments. Section 5 concludes.

2 Model

2.1 Set up

Time is discrete and indexed by t = 0, 1, 2, . . .. In each period a continuum of agents is born.
Agents live for two periods, “young” and “old”. Population grows at a constant gross rate
1 + n > 1.

There are two types of households: Ricardian (type R) and Keynesian (type K). In each
cohort a fraction 1−λ ∈ (0, 1) of young agents are Ricardian and a fraction λ are Keynesian.
These shares are exogenous and constant over time.

All households supply one unit of labor inelastically when young and do not work when
old. Preferences are separable across periods and identical within each type, but discount
factors differ. A young Ricardian born in period t chooses consumption when young, cR1t,
and when old, cR2,t+1, to maximize:

UR
t = u(cR1t) + βRu(c

R
2,t+1), (1)

while a young Keynesian maximizes:

UK
t = u(cK1t) + βKu(c

K
2,t+1), (2)

where u(·) is strictly increasing, strictly concave, twice continuously differentiable, and sat-
isfies the usual Inada conditions. We assume:

0 < βK < βR < 1,

so Ricardian households are more patient.
To obtain closed–form solutions, we later specialize to logarithmic utility, u(c) = ln c.

For most theoretical results below we keep u(·) general.
Production takes place in competitive firms using physical capital and two types of labor,

supplied by the two household types. Aggregate output in period t is:

Yt = F (Kt, L
R
t , L

K
t ) = Kα

t

(
LR
t

)γ1 (
LK
t

)γ2
, (3)

with α ∈ (0, 1), γ1 > 0, γ2 > 0, and α + γ1 + γ2 = 1. Capital fully depreciates between
periods.

Let total labor in period t be Lt = LR
t + LK

t . Labor supply by type is proportional to
population shares:

LR
t = (1− λ)Nt, LK

t = λNt,

where Nt is the number of young agents in period t and evolves as Nt+1 = (1 + n)Nt. Thus,
in per–worker terms, the production function can be written as:

yt ≡
Yt

Lt

= kα
t ℓ

γ1
R ℓγ2K , kt ≡

Kt

Lt

, ℓR ≡ LR
t

Lt

= 1− λ, ℓK ≡ LK
t

Lt

= λ. (4)
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Profit maximization under perfect competition implies that the rental rate of capital rt
and wages wR

t , w
K
t equal marginal products:

rt = FK(Kt, L
R
t , L

K
t ) = αkα−1

t (1− λ)γ1λγ2 , (5)

wR
t = FLR(Kt, L

R
t , L

K
t ) = γ1k

α
t (1− λ)γ1−1λγ2 , (6)

wK
t = FLK (Kt, L

R
t , L

K
t ) = γ2k

α
t (1− λ)γ1λγ2−1. (7)

There is a central bank that controls the nominal money stock Mt. Let Pt denote the
price level. Money grows at a constant gross rate 1 + η:

Mt = (1 + η)Mt−1. (8)

Given population growth, the inflation rate in steady state will differ from η; we clarify this
below.

The fiscal authority levies a proportional tax τk ∈ [0, 1) on capital income received by old
Ricardian households and rebates all fiscal and monetary revenues as lump–sum transfers to
old Keynesian households. We set the labor income tax rate to zero to focus on the interplay
between inflation and capital taxation.1

Both types of households can hold money. However, only Ricardian households can invest
in capital; Keynesian households are financially excluded and save only via money. To make
money essential, we follow the cash–in–advance (CIA) approach: a fixed fraction ξ ∈ (0, 1)
of old–age consumption of each Ricardian household must be financed with money:

MR
t

Pt

≥ ξcR2t, (9)

where MR
t denotes nominal money balances carried from period t − 1 to t by a Ricardian

agent born in t− 1. In equilibrium this constraint binds, so equality holds in (9). Keynesian
households face no CIA constraint beyond non–negativity, but in equilibrium they also hold
money to transfer income across periods.

2.2 Household problems

2.2.1 Ricardian households

A Ricardian household born in period t receives wage income wR
t when young, consumes

cR1t, carries real money balances mR
t = MR

t /Pt, and invests st in capital to be used in period
t+ 1. The budget constraints are:

cR1t +mR
t + st = wR

t , (10)

cR2,t+1 =
MR

t

Pt+1

+ (1− τk)rt+1st. (11)

The CIA constraint reads:
MR

t

Pt+1

= ξcR2,t+1. (12)

1Here, we simplify on the labor side and instead treat inflation as an explicit policy instrument.
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Combining Equations (11) and (12), we obtain:

cR2,t+1 =
(1− τk)rt+1

1− ξ
st. (13)

Using Equation (10), Ricardian lifetime utility can thus be written as:

UR
t = u(wR

t −mR
t − st) + βRu

(
(1− τk)rt+1

1− ξ
st

)
, (14)

subject to the definition of mR
t and the money–growth process.

Relative prices between money and goods are determined by the ratio Pt+1/Pt, which in
turn depends on money growth and the joint demand for money by both types; we return
to this when characterizing equilibrium.

For now we assume the agent takes (rt+1, w
R
t , Pt+1/Pt) as given and optimizes over

(cR1t,m
R
t , st), recognizing Equation (13). The intra–temporal choice between mR

t and st re-
flects a trade–off between liquidity and return.

With interior solutions, the first–order conditions (FOCs) of the Ricardian’s problem can
be summarized by two Euler equations: i) intertemporal substitution between cR1t and cR2,t+1

through capital:

u′(cR2,t+1

) (1− τk)rt+1

1− ξ
= β−1

R u′(cR1t) . (15)

and ii) optimal choice of money balances. Using the CIA constraint and the money–growth
process, the implicit marginal condition can be written as:

u′(cR2,t+1

) [ ξ

πt+1

]
= β−1

R u′(cR1t) · µt, (16)

where πt+1 ≡ Pt+1/Pt is gross inflation and µt reflects the shadow value of relaxing the CIA
constraint.2

Under logarithmic utility, u(c) = ln c, these conditions become particularly transparent:

1

cR2,t+1

(1− τk)rt+1

1− ξ
=

1

βR

1

cR1t
, (17)

and the money condition pins down the money–capital split given inflation.

2.2.2 Keynesian Households

A Keynesian household born in t earns wage income wK
t when young. They cannot invest in

capital and can only save in money. Let mK
t = MK

t /Pt denote real money balances carried
to old age. The budget constraints are:

cK1t +mK
t = wK

t , (18)

cK2,t+1 =
MK

t

Pt+1

+ Tt+1, (19)

2Because the CIA constraint binds, we can express the Ricardian’s problem in terms of (cR1t, st) alone and
recover money holdings from Equation (12) and the pricing equation for money. The explicit derivation is
in Appendix A.

6



where Tt+1 is the real transfer from the government to old Keynesian agents in period t+1.
The Keynesian’s problem is therefore:

max
cK1t,m

K
t

u(cK1t) + βKu

(
MK

t

Pt+1

+ Tt+1

)
. (20)

The FOC for mK
t yields the usual Euler equation:

u′(cK2,t+1

) 1

πt+1

= β−1
K u′(cK1t) . (21)

Under log utility,
1

cK2,t+1

1

πt+1

=
1

βK

1

cK1t
. (22)

2.3 Government budget constraint and transfers

Let Mt denote aggregate nominal money holdings at the end of period t (held by the young
and carried into t+ 1). From individual holdings we have:

Mt =
[
(1− λ)MR

t + λMK
t

]
Nt. (23)

Using Equation (8), seigniorage revenue in real terms in period t is:

St =
Mt −Mt−1

Pt

=
η

1 + η

Mt

Pt

. (24)

Capital tax revenue collected in period t is:

Rk
t = τkrtK

old
t , (25)

where Kold
t denotes the capital owned by the old Ricardian cohort. In equilibrium,

Kold
t = Kt = ktLt. (26)

The government rebates total revenue, seigniorage plus capital tax revenue, to old Key-
nesian households as lump–sum transfers:

TtλNt−1 = St +Rk
t . (27)

Dividing by Lt−1 yields the per–capita transfer to an old Keynesian agent in period t.

2.4 Competitive equilibrium

We now define a competitive equilibrium for given policy (η, τk).

Definition 1 (Competitive equilibrium) Given a constant money growth rate η and a
constant capital tax rate τk, a competitive equilibrium is a sequence of real allocations{

kt, c
R
1t, c

R
2t, c

K
1t, c

K
2t, st,m

R
t ,m

K
t , Tt

}∞
t=0

and prices {rt, wR
t , w

K
t , πt}∞t=0 such that:
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1. Given prices and transfers, Ricardian households solve their intertemporal problem and
satisfy the FOCs (15)–(16) and CIA constraint (12).

2. Given prices and transfers, Keynesian households solve their problem and satisfy Equa-
tion (21).

3. Firms maximize profits; factor prices satisfy Equations (5)–(7).

4. The government budget constraint (27) holds each period.

5. Markets clear: goods, money, labor, and capital markets all clear in every period.

To analyze policy we focus on steady–state equilibria in which all real variables (per
effective worker) are constant over time.

2.5 Steady state and capital accumulation

We now derive the steady state under log utility, u(c) = ln c. This allows closed–form
expressions for key objects and sharp comparative statics with respect to (η, τk) and the
population share λ.

2.5.1 Capital accumulation

Let k∗ denote the steady–state capital–labor ratio. From Ricardian savings and the law of
motion for capital, with population growth,

kt+1 =
(1− λ)st
1 + n

. (28)

In steady state kt+1 = kt = k∗ and st = s∗. Combining with Ricardian budget constraints
and the FOCs under log utility yields an explicit formula.

Using Equations (17) and (13) with u(c) = ln c gives:

1

cR2

(1− τk)r
∗

1− ξ
=

1

βR

1

cR1
, (29)

so that

cR2 =
(1− τk)r

∗

1− ξ

βR

1 + βR

wR, cR1 =
1

1 + βR

wR, (30)

where wR ≡ wR
t and r∗ ≡ rt in steady state. From the period–t Ricardian budget constraint,

s∗ = wR − cR1 −mR. (31)

Using the CIA condition and the fact that a fraction ξ of cR2 must be financed with money,
steady–state money holdings for a Ricardian agent are:

mR = ξcR2
Pt+1

Pt

= ξcR2 π, (32)
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with π ≡ Pt+1/Pt. The aggregate money demand and supply determine π as a function of η
and (mR,mK); under mild conditions the gross inflation rate in steady state can be written
as:

π∗ =
1 + η

1 + n
ϕ(λ, βR, βK , ξ), (33)

where ϕ(·) captures the composition of money demand between the two types.3

Combining these elements, one can show that the steady–state capital–labor ratio is given
by:

k∗ =

(
(βR + 1) [1 + n+ ξ(η − n)]

[βR(1− ξ)γ1 − αξ(βR + 1)(1 + η)(1− τk)] (1− λ)γ1λ−γ2

) 1
α−1

, (34)

provided the denominator is positive.

Lemma 1 (Existence of a positive steady–state capital stock) Suppose parameters sat-
isfy

βR(1− ξ)γ1 > αξ(βR + 1)(1 + η)(1− τk). (35)

Then the expression in Equation (34) is well–defined and yields a unique positive steady–state
capital–labor ratio k∗ > 0.

Proof. The steady-state capital-labor ratio k∗ is given by:

k∗ =

(
(βR + 1)[1 + n+ ξ(η − n)]

[βR(1− ξ)γ1 − αξ(βR + 1)(1 + η)(1− τk)](1− λ)γ1λ−γ2

) 1
α−1

(36)

where α ∈ (0, 1), γ1, γ2 > 0, βR > 0, n > 0, ξ ∈ (0, 1), and τk ∈ [0, 1).
For k∗ to be well-defined and strictly positive, the following three conditions must hold:
Condition 1: Positivity of the numerator : The numerator is: N = (βR+1)[1+n+ξ(η−n)].

• The first factor is strictly positive: (βR + 1) > 0 since the patience parameter βR is
positive.

• The second factor is: [1 + n + ξ(η − n)] = (1− ξ)(1 + n) + ξ(1 + η). Since ξ ∈ (0, 1),
βR > 0, η > −1, and n > −1, both terms (1 − ξ)(1 + n) and ξ(1 + η) are strictly
positive. Thus, the numerator N > 0.

Condition 2: Positivity of the denominator (non-negativity constraint): The denominator
is: D = [βR(1− ξ)γ1 − αξ(βR + 1)(1 + η)(1− τk)](1− λ)γ1λ−γ2 .

• The factor (1− λ)γ1λ−γ2 is strictly positive since λ ∈ (0, 1) and γ1, γ2 > 0.

• The term in square brackets [. . . ] is guaranteed to be strictly positive by the imposed
existence condition (Equation (35)):

βR(1− ξ)γ1 > αξ(βR + 1)(1 + η)(1− τk)

3The explicit expression for ϕ(·) is available (see Appendix B), but not particularly informative. What
matters for our comparative statics is that π∗ is increasing in η and depends on the relative frequency and
patience of the two types, as well as on ξ.
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Since both factors are positive, the entire denominator D > 0. Therefore, the fraction N
D
> 0.

Condition 3: Positivity of k∗ via the exponent : The base of the exponent is established
to be positive, N

D
> 0. We examine the exponent:

1

α− 1

The production function parameter α satisfies α ∈ (0, 1), implying the exponent α − 1 ∈
(−1, 0). Therefore, the overall exponent 1

α−1
is strictly negative. Raising a positive real

number to a negative power yields a strictly positive result: k∗ > 0.
Uniqueness: The steady-state is determined by the intersection of the Ricardian savings

function and the required capital accumulation line kt+1 =
1−λ
1+n

st. Since the utility function
u(·) is strictly concave, the marginal utility u′(·) is strictly decreasing. In equilibrium, this
ensures that the Ricardian household’s savings function is strictly monotonic in the rental
rate r∗ (which is monotonic in k∗), guaranteeing a unique intersection point. The stated
conditions thus ensure that k∗ is both defined and yields a unique positive value.

Given k∗, the steady–state interest rate and wages follow from Equations (5)–(7):

r∗ = α(k∗)α−1(1− λ)γ1λγ2 , (37)

wR = γ1(k
∗)α(1− λ)γ1−1λγ2 , (38)

wK = γ2(k
∗)α(1− λ)γ1λγ2−1. (39)

2.5.2 Comparative statics in (η, τk)

We now describe how inflation and the capital tax affect steady–state capital accumulation.

Proposition 1 (Inflation, capital taxation, and capital accumulation) Under Assump-
tion (35) and log utility, the steady–state capital–labor ratio k∗ in Equation (34) satisfies:

1. k∗ is decreasing in the money–growth parameter η whenever the CIA constraint is
binding (ξ > 0).

2. k∗ is increasing in the capital tax rate τk whenever ξ > 0.

Proof. The steady-state capital-labor ratio k∗ is defined by the analytical solution (Equation
(34)):

k∗ =

(
(βR + 1)[1 + n+ ξ(η − n)]

[βR(1− ξ)γ1 − αξ(βR + 1)(1 + η)(1− τk)](1− λ)γ1λ−γ2

) 1
α−1

We utilize the logarithmic derivative for simplicity. Define the base as Z:

Z =
NηC1

DηC2

and ε =
1

α− 1
< 0

where Nη = 1+ n+ ξ(η − n), Dη = βR(1− ξ)γ1 − αξ(βR + 1)(1 + η)(1− τk), and C1, C2 are
positive constants independent of η and τk. The partial derivative of k∗ with respect to any
parameter x is:

∂k∗

∂x
= k∗∂ ln k

∗

∂x
= εk∗

[
∂ lnNη

∂x
− ∂ lnDη

∂x

]
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Part 1: Effect of money growth (η): We calculate the derivatives of Nη and Dη with respect
to η:

• Numerator derivative: ∂Nη

∂η
= ∂

∂η
[1 + n+ ξη − ξn] = ξ.

• Denominator derivative: ∂Dη

∂η
= ∂

∂η
[βR(1− ξ)γ1 − αξ(βR + 1)(1− τk)(1 + η)]

∂Dη

∂η
= −αξ(βR + 1)(1− τk) < 0

The derivative of the logarithmic terms is:

∂ ln k∗

∂η
=

1

α− 1

[
∂ lnNη

∂η
− ∂ lnDη

∂η

]
= ε

[
ξ

Nη

− −αξ(βR + 1)(1− τk)

Dη

]
∂k∗

∂η
= εk∗

[
ξ

Nη

+
αξ(βR + 1)(1− τk)

Dη

]
Sign analysis: i) ε = 1

α−1
< 0; ii) k∗ > 0; iii) Nη > 0 and Dη > 0 (by Assumption

and Lemma 1); and iv) Since ξ > 0 (CIA binding), the term in square brackets is strictly
positive ([. . . ] > 0). Therefore, ∂k∗

∂η
= ε︸︷︷︸

<0

·k∗ · [. . . ]︸︷︷︸
>0

< 0. This verifies the first claim.

Part 2: Effect of capital tax (τk): We calculate the derivatives of Nη and Dη with respect to
τk:

• Numerator derivative: ∂Nη

∂τk
= 0, as Nη is independent of τk.

• Denominator derivative: ∂Dη

∂τk
= ∂

∂τk
[βR(1− ξ)γ1 − αξ(βR + 1)(1 + η)(1− τk)]

∂Dη

∂τk
= αξ(βR + 1)(1 + η) > 0

The derivative of k∗ is:

∂k∗

∂τk
= εk∗

[
0− 1

Dη

∂Dη

∂τk

]
= εk∗

[
−αξ(βR + 1)(1 + η)

Dη

]
Sign analysis: i) ε = 1

α−1
< 0; ii) k∗ > 0; and iii) The term in square brackets is strictly

negative ([. . . ] < 0). Therefore, ∂k∗

∂τk
= ε︸︷︷︸

<0

·k∗ · [. . . ]︸︷︷︸
<0

> 0. This verifies the second claim.

The economic mechanism indicates that higher inflation makes money less attractive,
induces Ricardian households to hold more liquid balances for CIA reasons, and compresses
resources available for capital investment, thereby reducing k∗. By contrast, a higher capital
tax reduces the post–tax return on capital in old age; because part of old–age consumption
must be financed with money, the tax shifts the Ricardian portfolio toward money and
induces additional savings to offset the lower return. When the CIA constraint is strong
enough, this income effect dominates the substitution effect, and k∗ increases with τk.
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2.6 Inequality and the distribution of income

We measure inequality along two margins: (i) wage inequality among the young; and (ii)
total income inequality among the old. In steady state, these are functions of (λ, γ1, γ2) and
(η, τk) through k∗ and factor prices.

2.6.1 Wage inequality among the young

Define the wage ratio:

G1 ≡
wR

wK
=

γ1
γ2

λ

1− λ
. (40)

Expression (40) is independent of (η, τk), reflecting that monetary and capital–tax policies
do not affect the relative marginal products of the two labor types in this Cobb–Douglas
structure.

Lemma 2 (Wage inequality and population shares) Suppose γ1 + γ2 = 1− α and let
G1 be defined as in Equation (40). Then

∂G1

∂λ
> 0,

∂G1

∂γ1
> 0,

so a higher share of Keynesian households or a higher labor income share for Ricardian
workers increases wage inequality among the young.

Proof. The proof requires direct differentiation of G1 with respect to the parameters λ and
γ1.
Part 1: Effect of Keynesian population share (λ): We differentiate G1 with respect to λ,
treating γ1 and γ2 as constants:

∂G1

∂λ
=

∂

∂λ

[
γ1
γ2

· λ

1− λ

]
We treat γ1

γ2
as a constant factor, C. We apply the quotient rule or the power rule to the

term λ
1−λ

:

∂

∂λ

(
λ

1− λ

)
=

1 · (1− λ)− λ · (−1)

(1− λ)2
=

1− λ+ λ

(1− λ)2
=

1

(1− λ)2

Substituting this back:
∂G1

∂λ
=

γ1
γ2

· 1

(1− λ)2

Since γ1 > 0, γ2 > 0, and (1−λ)2 > 0 (as λ ∈ (0, 1)), the entire expression is strictly positive:

∂G1

∂λ
> 0

This verifies the first claim: a higher share of Keynesian households (λ) increases wage
inequality among the young.
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Part 2: Effect of Ricardian labor income share (γ1): We differentiate G1 with respect to γ1.
Since the factor shares are constrained such that α + γ1 + γ2 = 1 (or γ1 + γ2 = 1 − α), we
must substitute γ2 = (1− α)− γ1. The wage ratio becomes:

G1 =
γ1

(1− α)− γ1
· λ

1− λ

We differentiate G1 with respect to γ1, treating
λ

1−λ
as a constant factor C ′.

∂G1

∂γ1
= C ′ · ∂

∂γ1

[
γ1

(1− α)− γ1

]
Applying the quotient rule, where the numerator is N ′ = γ1 and the denominator is

D′ = (1− α)− γ1:

∂

∂γ1

(
N ′

D′

)
=

∂N ′

∂γ1
D′ −N ′ ∂D′

∂γ1

(D′)2

Since ∂N ′

∂γ1
= 1 and ∂D′

∂γ1
= −1:

∂

∂γ1

(
γ1

(1− α)− γ1

)
=

1 · ((1− α)− γ1)− γ1 · (−1)

((1− α)− γ1)2

=
1− α− γ1 + γ1
((1− α)− γ1)2

=
1− α

((1− α)− γ1)2

Substituting this back into the derivative of G1:

∂G1

∂γ1
=

λ

1− λ
· 1− α

((1− α)− γ1)2

Sign analysis: i) λ ∈ (0, 1), so λ
1−λ

> 0; ii) α ∈ (0, 1), so 1− α > 0; and iii) the denominator
is strictly positive. Therefore, the entire expression is strictly positive:

∂G1

∂γ1
> 0

This verifies the second claim: a higher labor income share for Ricardian workers (γ1) in-
creases wage inequality among the young.

2.6.2 Income inequality among the old

Old Ricardian households receive after–tax capital income and consume cR2 ; old Keynesian
households receive transfers and consume cK2 . In steady state, using the expressions derived
above, one can write:

G2 ≡
cR2
cK2

= G2(λ, γ1, γ2, βR, βK , ξ, η, τk). (41)

The exact formula is lengthy;4 we focus on comparative statics.

4See Appendix C.
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Proposition 2 (Inflation, capital taxation, and old-age inequality) Consider the steady
state under log utility and Assumption (35). Then:

1. Holding τk fixed and increasing η raises G2 whenever the CIA constraint is binding
(ξ > 0) and transfers are not too large.

2. Holding η fixed and increasing τk lowers G2.

Proof. The old-age inequality ratio is G2 ≡ cR2 /c
K
2 . The analysis uses logarithmic differ-

entiation, ∂ lnG2

∂x
=

∂ ln cR2
∂x

− ∂ ln cK2
∂x

, and the previously established result from Proposition 1:
∂k∗

∂η
< 0 and ∂k∗

∂τk
> 0.

Key definitions and relationships :

• cR2 ∝ wR · κ
1+πξκ

(where κ ∝ (1− τk)r and wR, r depend on k∗).

• cK2 ∝ wK

π
+ T .

• π = 1+η
1+n

.

• ∂ ln cR2
∂ ln k∗

= α+ (α− 1) 1
1+πξκ

< 0.

Part 1: Effect of money growth (η): The derivative of G2 with respect to η is proportional
to:

∂ lnG2

∂η
=

∂ ln cR2
∂η

− ∂ ln cK2
∂η

1. Ricardian Term (∂ ln cR2 /∂η): η increases π (negative liquidity effect) and decreases
k∗ (negative income effect via Proposition 1).

∂ ln cR2
∂η

=
∂ ln cR2
∂ ln k∗︸ ︷︷ ︸

<0

∂ ln k∗

∂η︸ ︷︷ ︸
<0

+
∂ ln cR2
∂π︸ ︷︷ ︸
<0

∂π

∂η︸︷︷︸
>0

The sign of
∂ ln cR2
∂η

is generally ambiguous or slightly negative (as two negative effects

are added, but the full effect relies on magnitudes).

2. Keynesian Term (∂ ln cK2 /∂η): This term captures the structural distortion of in-
flation on the sole Keynesian saving instrument (mK) vs. the compensatory transfer
T .

∂ ln cK2
∂η

∝ ∂

∂η

(
wK

π
+ T

)
The term wK

π
falls sharply due to ↑ π. While ↑ T provides a positive counter-effect,

the assumption that T is “not too large” implies the structural inflation tax distortion
dominates the compensatory transfer effect, leading to a strong reduction in Keynesian
consumption.
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Given that the Ricardians are shielded by capital and Keynesians bear the full brunt of the
inflation tax on money, the strong negative structural effect on cK2 dominates any marginal
changes in cR2 , ensuring cR2 /c

K
2 rises:

∂G2

∂η
> 0

Part 2: Effect of capital tax (τk):

∂ lnG2

∂τk
=

∂ ln cR2
∂τk

− ∂ ln cK2
∂τk

1. Ricardian Term (∂ ln cR2 /∂τk): τk affects cR2 directly via (1 − τk) and indirectly via
k∗.

∂ ln cR2
∂τk

=
∂ ln cR2
∂ ln k∗︸ ︷︷ ︸

<0

∂ ln k∗

∂τk︸ ︷︷ ︸
>0

+
∂ ln cR2
∂τk

∣∣∣
direct︸ ︷︷ ︸

<0

The direct negative effect of taxing capital is reinforced by the indirect negative effect
of increasing k∗ (which lowers the rate of return, κ). Thus, ∂ ln cR2 /∂τk < 0.

2. Keynesian Term (∂ ln cK2 /∂τk): τk exclusively increases the transfer T (∂T/∂τk > 0).
This transfer is the dominant component increasing cK2 .

∂ ln cK2
∂τk

=
1

cK2

∂cK2
∂τk

> 0

The derivative ∂ lnG2

∂τk
is the difference between a negative term and a positive term:

∂ lnG2

∂τk
= Negative︸ ︷︷ ︸

∂ ln cR2 /∂τk

− Positive︸ ︷︷ ︸
∂ ln cK2 /∂τk

< 0

Thus, ∂G2

∂τk
< 0.

Proposition 2 highlights a central tension: inflation is a regressive instrument in this
environment, while capital taxation is progressive.

2.7 Social welfare and the Ramsey problem

We now define social welfare and study the government’s optimal choice of (η, τk) subject to
the competitive equilibrium constraints.

2.7.1 Social welfare

Let steady–state lifetime utilities of Ricardian and Keynesian households be UR and UK

respectively. Under log utility and in steady state,

UR = ln cR1 + βR ln cR2 , (42)

UK = ln cK1 + βK ln cK2 . (43)
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We consider a utilitarian welfare function with constant Pareto weight ω ∈ (0, 1) on Ricardian
households:

W (η, τk) = (1− λ)
[
ωUR

]
+ λ

[
(1− ω)UK

]
. (44)

The weights ω and 1 − ω capture the planner’s distributional preferences between the two
types.

2.7.2 Ramsey problem

The Ramsey planner chooses constant (η, τk) to maximizeW (η, τk) subject to the steady–state
equilibrium conditions that link these policy instruments to (k∗, cR1 , c

R
2 , c

K
1 , c

K
2 ).

Definition 2 (Ramsey problem) A Ramsey equilibrium is a pair (η⋆, τ ⋆k ) and associated
steady–state allocations such that:

1. The allocations form a competitive steady–state equilibrium for policy (η⋆, τ ⋆k ).

2. (η⋆, τ ⋆k ) solves
max
η,τk

W (η, τk),

subject to equilibrium constraints and feasibility.

The optimization can be written in reduced form as:

max
η,τk

W
(
η, τk; k

∗(η, τk), c
R
1 (η, τk), . . .

)
,

where k∗(η, τk) is given by Equation (34) and the consumption levels follow from household
and government budget constraints.

Theorem 1 (Qualitative properties of optimal policy) Suppose Assumption (35) holds,
the CIA constraint is binding (ξ > 0), and the planner places weakly higher welfare weight
on Keynesian households, (1−ω)λ ≥ ω(1−λ). Then any Ramsey optimum (η⋆, τ ⋆k ) satisfies:

1. τ ⋆k > 0, i.e. the optimal capital tax is strictly positive.

2. η⋆ is finite and strictly positive: pure deflation (η ≤ 0) and arbitrarily high inflation
are both suboptimal.

3. The optimal pair (η⋆, τ ⋆k ) trades off capital accumulation against redistribution: in-
creasing τk from zero raises welfare for small deviations, but beyond a point further
increases reduce k∗ and compress UR enough to lower social welfare.

Proof. The Ramsey Planner maximizes the utilitarian welfare function W = (1− λ)ωUR +
λ(1− ω)UK , subject to the steady-state equilibrium conditions.
Part 1: Optimal capital tax is strictly positive (τ ∗k > 0): We show that the marginal social
welfare derived from increasing the capital tax is positive at the zero boundary τk = 0.

The marginal welfare impact is:

∂W

∂τk
= (1− λ)ω

∂UR

∂τk
+ λ(1− ω)

∂UK

∂τk
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Due to the Envelope Theorem, the total derivative ∂U i

∂τk
only needs to account for the

direct effect of τk on income/transfers and the general equilibrium effect via ∂k∗

∂τk
.

1. Loss to Ricardians (∂UR/∂τk): The direct effect of τk is to reduce the post-tax
return on capital, (1− τk)r

∗. This reduces cR2 and imposes a utility loss.

∂cR2
∂τk

< 0 ⇒ ∂UR

∂τk
< 0

2. Gain to Keynesians (∂UK/∂τk): The tax revenue Rk ∝ τk is entirely rebated as
transfer T to old Keynesian households.

∂T

∂τk
=

1 + n

λ
r∗k∗ > 0 at τk = 0

This direct injection of income raises cK2 and thus UK (∂U
K

∂τk
> 0).

At τk = 0, the general equilibrium effect via ∂k∗/∂τk is second-order. The dominant first-
order effect is the pure redistribution from R to K. Given the logarithmic utility, the
marginal utility of consumption is higher for the lower-wealth group (K), and the planner’s
weight bias λ(1 − ω) ≥ ω(1 − λ) favors this gain. Therefore, the marginal social benefit of
redistribution must outweigh the loss near the zero bound:

∂W

∂τk

∣∣∣
τk=0

> 0

This implies that the optimal capital tax is strictly positive, τ ∗k > 0.
Part 2: Optimal inflation is positive and finite (η∗ ∈ (0,∞)):

1. Finiteness (η∗ < ∞): As η → ∞, gross inflation π∗ → ∞. This reduces the real
value of all non-indexed savings (money). The Ricardian capital stock k∗ → 0 (due
to Proposition 1). Consequently, all factor incomes approach zero (wi → 0) and
consumption levels ci1 → 0. Since U i = ln ci1+ . . . , limW (η, τk) → −∞. Thus, η∗ must
be finite.

2. Positivity (η∗ > 0): We evaluate ∂W
∂η

at η = 0.

∂W

∂η
∝ ∂W

∂S
∂S
∂η︸ ︷︷ ︸

Seigniorage Gain (Positive)

+
∂W

∂k∗
∂k∗

∂η︸ ︷︷ ︸
Capital Distortion (Negative)

At η = 0:

• The creation of seigniorage (S) at η = 0 is marginally productive (∂S/∂η > 0).
This revenue T (s) benefits the highly weighted Keynesians, providing a strong
marginal social gain.

• The monetary distortion ∂k∗

∂η
is negative (Proposition 1).

17



However, the ability to generate efficient transfer income S at η = 0 (which is a
first-order effect on the utility of low-income agents K) outweighs the second-order
distortionary cost of η on k∗. Given the planner’s preference for Keynesians, the
redistribution channel dominates.

∂W

∂η

∣∣∣
η=0

> 0

Therefore, η∗ must be strictly positive.

Part 3: Trade-off : This part is a qualitative summary of the optimal interior solution (η∗, τ ∗k ).
The intersection of the two FOCs determines (η∗, τ ∗k ), where the marginal social benefit of
redistribution (gains from T and S) is perfectly balanced by the marginal social cost of the
capital stock reduction (losses from ∂k∗/∂x < 0).

3 Calibration and Simulation

We calibrate the model to reflect the macroeconomic and demographic characteristics of
Australia, aligning the model’s periods with approximately 25-year generations, typical for
overlapping generations (OLG) models. The primary goal is to establish a plausible steady
state and analyze the comparative steady-state effects (impulses) of monetary (η) and fiscal
(τk) policy on capital accumulation (k∗) and old-age consumption inequality (G2).

The parameters are assigned values based on empirical observations for Australia and
common values adopted in the OLG macro literature. The generational length is set to
T = 25 years. Specifically, we use an average annual population growth rate of nannual ≈ 1.5%
(average Australian rate, 1990 − 2020), leading to a generational growth factor 1 + n =
(1 + 0.015)25 ≈ 1.450. The capital share (α) is typically set around 0.35. The labor shares
(γ1, γ2) are determined to satisfy the constant returns to scale condition (α + γ1 + γ2 = 1).
Ricardian patience (βR) is calibrated to target a reasonable long-run annual real interest
rate (rannual ≈ 3%). Keynesian patience (βK) is set lower (βK < βR) to represent their
structural financial exclusion and short-sighted saving behavior. τk is set to reflect the
effective capital tax rate. The money growth factor η is calibrated such that the implied
steady-state annual inflation rate πannual = 1.025 (Reserve Bank of Australian (RBA) target)
is achieved: π∗ = 1+η

1+n
=⇒ 1 + η = 1.02525 × 1.450/1.01525 ≈ 1.47. Thus, η ≈ 0.47. ξ

captures the intensity of the CIA constraint.
The parameters are chosen to satisfy the steady-state existence condition (Equation (35)).

The choice of βR = 0.50 (annual net discount rate ≈ 3%) reflects the necessary intertemporal
patience required for Ricardians to sustain a positive capital stock, while the lower βK = 0.30
formalizes the Keynesian agents’ impatience/financial constraint, leading to their reliance on
monetary assets. The high marginal money growth rate (η = 0.47) is necessary to maintain
the 2.5% annual inflation target over a 25-year generational period, demonstrating the large
nominal shock embedded in the model.

We simulate the qualitative effects established in Proposition 1 (∂k∗/∂η < 0, ∂k∗/∂τk >
0) and Proposition 2 (∂G2/∂η > 0, ∂G2/∂τk < 0). Figure 1 reports comparative steady-state
responses of the capital–labor ratio k∗ and the old-age consumption-inequality index G2 ≡
cR2
cK2

to changes in the policy instruments (η, τk) around the Australian baseline calibration
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(notably, τk = 0.20 and η = 0.47). The experiment varies one instrument locally around its
baseline value while holding the other fixed, so each curve can be read as a partial steady-
state impulse along a single policy dimension.

Table 1: Calibrated baseline parameters (annualized and generational)
Parameter Value Basis Description

Panel A. Demographic and technological parameters
1 + n (Pop. growth) 1.450 AUS data (1.5%/yr, 25 yr) Gross population growth factor
α (Capital share) 0.35 Standard macro (α ≈ 1/3) Share of capital in output
γ1 (Ricardian labor share) 0.30 Calibration target Ricardian labor elasticity
γ2 (Keynesian labor share) 0.35 γ2 = 1− α− γ1 Keynesian labor elasticity
λ (Keynesian share) 0.40 Targeting financially constrained pop. Fraction of Keynesian households

Panel B. Preference and institutional parameters
βR (Ricardian patience) 0.50 Targeting r∗ and k∗ existence Ricardian generational discount factor
βK (Keynesian patience) 0.30 βK < βR (Financial exclusion) Keynesian generational discount factor
ξ (CIA requirement) 0.15 Liquidity constraint intensity Fraction of cR2 requiring money
B (Low-sector productivity) 0.03 Targeting R∗ Return to low-productivity capital
τk (Capital tax rate) 0.20 AUS effective corporate tax rate Tax on capital income
η (Money growth rate) 0.47 Targeting π∗ = 1.02525 Net money growth factor (1 + η ≈ 1.47)

Note: Parameters are calibrated to Australian macroeconomic data, primarily sourcing targets from the
Australian Bureau of Statistics (ABS) for demographic and capital share data, and RBA (Reserve Bank of
Australia) for inflation targets.

The upper-left panel shows a strictly decreasing relationship between money growth η and
the steady-state capital intensity k∗. This is precisely the comparative-static sign established
in Proposition 1, ∂k∗/∂η < 0. Economically, a higher η implies a higher steady-state inflation
rate π∗ = (1 + η)/(1 + n) under constant money growth. With a binding CIA requirement,
higher inflation increases the effective liquidity cost of financing old-age consumption, which
acts as a wedge against intertemporal reallocation and, in general equilibrium, compresses
aggregate savings and capital accumulation.

The upper-right panel shows that G2 rises monotonically with η, consistent with Propo-
sition 2, ∂G2/∂η > 0. The key mechanism is distributional: inflation erodes the real value
of monetary claims. Since the Keynesian household is structurally more reliant on monetary
assets/transfer income (captured by the lower patience parameter and the model’s segmenta-
tion), higher inflation disproportionately reduces the purchasing power of resources available
to the constrained group, lowering cK2 relative to cR2 and therefore increasing G2.

The lower-left panel shows that k∗ increases with the capital tax rate τk, matching Propo-
sition 1’s sign ∂k∗/∂τk > 0. This pattern is non-standard relative to representative-agent
benchmarks, and it reflects the model’s joint presence of heterogeneity and liquidity dis-
tortions: because the government rebates revenue (including capital-tax revenue) to old
Keynesian households as lump-sum transfers, higher τk raises the transfer component re-
ceived by the constrained group. In steady state, this redistribution interacts with the CIA
wedge and the equilibrium pricing system in a way that relaxes the economy-wide liquidity,
thereby supporting higher capital intensity in equilibrium (as summarized by the closed-form
comparative statics in Proposition 1).

Finally, the lower-right panel indicates that G2 declines with τk, consistent with Proposi-
tion 2’s result ∂G2/∂τk < 0. The distributional intuition is direct given the transfer scheme.
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Specificall, a higher τk increases tax-financed transfers to the Keynesian old, raising cK2
relative to cR2 and compressing old-age consumption inequality.

Figure 1: Comparative steady-state effects of monetary and fiscal policy

Taken together, Figure 1 provides a quantitative visualization of the model’s two central
comparative-static trade-offs under the Australian calibration: (i) inflationary finance is
contractionary in capital accumulation and regressive in old-age consumption shares (higher
η ⇒ lower k∗ and higher G2), while (ii) capital taxation is expansionary for k∗ and equalizing
for G2 in this heterogeneous-agent, CIA-distorted OLG environment (higher τk ⇒ higher k∗

and lower G2).

4 Model Extensions

This section develops three robustness extensions of the baseline heterogeneous-household
OLG model with a binding cash-in-advance (CIA) requirement for old-age consumption. The
goal is to verify that the main mechanisms in the model (i.e., the joint role of heterogeneity,
liquidity wedges, and fiscal-monetary incidence) do not rely on knife-edge assumptions about:
i) social welfare weights, ii) complete exclusion of Keynesian households from capital markets,
or iii) the absence of a simple public-debt or consumption-tax instrument.
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Throughout, we retain the baseline production side and factor pricing, and focus on
modifications on the household and government sides. Unless stated otherwise, we continue
to assume log utility to keep the algebra transparent and to isolate the economic mechanism
from preference curvature effects.

4.1 Alternative social welfare weights

4.1.1 A class of weighted welfare functionals

Let the social objective at a stationary allocation be

W(ω;λ) ≡ (1− λ)ωR

[
ln cR1 + βR ln cR2

]
+ λωK

[
ln cK1 + βK ln cK2

]
, (45)

where (ωR, ωK) are positive weights. We normalise without loss of generality:

(1− λ)ωR + λωK = 1. (46)

Define the relative welfare weight on Keynesian households as:

ω ≡ ωK

ωR

> 0. (47)

Then Equation (46) implies the explicit mapping

ωR(ω) =
1

(1− λ) + λω
, ωK(ω) =

ω

(1− λ) + λω
. (48)

where ω > 1 captures “pro-poor” weighting (more social value on Keynesian utility), while
ω < 1 captures “pro-rich” weighting. Importantly, Equation (45) is still additive across types
and life-periods, so it continues to support clean welfare comparisons and policy trade-offs.

4.1.2 Weighted welfare decomposition (efficiency vs. redistribution)

The baseline log-utility decomposition can be generalised exactly. Define weighted popula-
tion shares:

λ̃ ≡ λωK(ω), 1− λ̃ ≡ (1− λ)ωR(ω),

so that (1− λ̃) + λ̃ = 1 by Equation (46). Then,

W = (1− λ̃) ln cR1 + λ̃ ln cK1 + (1− λ̃)βR ln cR2 + λ̃βK ln cK2 .

Let c̄1(ω) ≡ (1− λ̃)cR1 + λ̃cK1 . Then,

(1− λ̃) ln cR1 + λ̃ ln cK1 = ln c̄1(ω) + ln I1(ω), (49)

where

I1(ω) ≡
(cR1 )

1−λ̃(cK1 )
λ̃

c̄1(ω)
∈ (0, 1]. (50)
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For old age, let β̄(ω) ≡ (1− λ̃)βR + λ̃βK and define

aR(ω) ≡
(1− λ̃)βR

β̄(ω)
, aK(ω) ≡

λ̃βK

β̄(ω)
.

Define c̄β2 (ω) ≡ aR(ω)c
R
2 + aK(ω)c

K
2 . Then,

(1− λ̃)βR ln cR2 + λ̃βK ln cK2 = β̄(ω) ln c̄β2 (ω) + β̄(ω) ln I2(ω), (51)

where

I2(ω) ≡
(cR2 )

aR(ω)(cK2 )
aK(ω)

c̄β2 (ω)
∈ (0, 1]. (52)

Proposition 3 (Exact weighted decomposition under log utility) Under log utility and
weights satisfying Equation (46), weighted welfare admits the exact decomposition

W(ω;λ) = Weff(ω;λ) +Wred(ω;λ), (53)

where

Weff(ω;λ) = ln c̄1(ω) + β̄(ω) ln c̄β2 (ω), Wred(ω;λ) = ln I1(ω) + β̄(ω) ln I2(ω) ≤ 0. (54)

Moreover, Wred(ω;λ) = 0 iff cR1 = cK1 and cR2 = cK2 .

Proof. The welfare function is defined as:

W(ω;λ) = (1− λ)ωRU
R + λωKU

K

Under log utility, U i = ln ci1 + βi ln c
i
2. Substituting this in:

W = (1− λ)ωR(ln c
R
1 + βR ln cR2 ) + λωK(ln c

K
1 + βK ln cK2 )

=
[
(1− λ)ωR ln cR1 + λωK ln cK1

]︸ ︷︷ ︸
Young-age term (W1)

+
[
(1− λ)ωRβR ln cR2 + λωKβK ln cK2

]︸ ︷︷ ︸
Old-age term (W2)

We use the weighted population shares, where λ̃ ≡ λωK(ω) and 1 − λ̃ ≡ (1 − λ)ωR(ω). By
the normalization (46), (1− λ̃) + λ̃ = 1.
Step 1: Young-age term W1: The young-age term is:

W1 = (1− λ̃) ln cR1 + λ̃ ln cK1

This is the logarithm of the weighted geometric mean of cR1 and cK1 :

W1 = ln
(
(cR1 )

1−λ̃(cK1 )
λ̃
)

Now, we manipulate the expression to include the weighted arithmetic mean c1(ω) ≡
(1− λ̃)cR1 + λ̃cK1 :

W1 = ln

(
c1(ω) ·

(cR1 )
1−λ̃(cK1 )

λ̃

c1(ω)

)
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Using the property ln(a · b) = ln a+ ln b:

W1 = ln c1(ω) + ln

(
(cR1 )

1−λ̃(cK1 )
λ̃

c1(ω)

)

The term I1(ω) is defined as the ratio inside the second logarithm:

I1(ω) ≡
(cR1 )

1−λ̃(cK1 )
λ̃

c1(ω)

Thus, we obtain the decomposition for the young-age term:

W1 = ln c1(ω) + ln I1(ω)

Step 2: Old-age term W2: The old-age term is:

W2 = (1− λ̃)βR ln cR2 + λ̃βK ln cK2

We define the weighted average discount factor β(ω) ≡ (1− λ̃)βR + λ̃βK . We factor this out
of W2:

W2 = β(ω)

[
(1− λ̃)βR

β(ω)
ln cR2 +

λ̃βK

β(ω)
ln cK2

]
The normalized weights aR(ω) and aK(ω) are defined as the coefficients:

aR(ω) ≡
(1− λ̃)βR

β(ω)
and aK(ω) ≡

λ̃βK

β(ω)

It is verified that aR(ω) + aK(ω) = 1. Substituting these back:

W2 = β(ω)
[
aR(ω) ln c

R
2 + aK(ω) ln c

K
2

]
Using the weighted geometric mean property:

W2 = β(ω) ln
(
(cR2 )

aR(ω)(cK2 )
aK(ω)

)
Now, we manipulate the expression to include the weighted arithmetic mean cβ2 (ω) ≡

aR(ω)c
R
2 + aK(ω)c

K
2 :

W2 = β(ω) ln

(
cβ2 (ω) ·

(cR2 )
aR(ω)(cK2 )

aK(ω)

cβ2 (ω)

)
Using the property ln(a · b) = ln a+ ln b:

W2 = β(ω)

[
ln cβ2 (ω) + ln

(
(cR2 )

aR(ω)(cK2 )
aK(ω)

cβ2 (ω)

)]
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The term I2(ω) is defined as the ratio inside the second logarithm:

I2(ω) ≡
(cR2 )

aR(ω)(cK2 )
aK(ω)

cβ2 (ω)

Thus, we obtain the decomposition for the old-age term:

W2 = β(ω) ln cβ2 (ω) + β(ω) ln I2(ω)

Step 3: Final decomposition and non-positivity : Combining W1 and W2:

W = W1 +W2

=
[
ln c1(ω) + β(ω) ln cβ2 (ω)

]
︸ ︷︷ ︸

Weff (ω;λ)

+
[
ln I1(ω) + β(ω) ln I2(ω)

]︸ ︷︷ ︸
Wred(ω;λ)

This confirms the exact decomposition: W(ω;λ) = Weff (ω;λ) +Wred(ω;λ).
Non-positivity of Wred: The non-positivity of Wred relies on the Weighted Arithmetic

Mean - Geometric Mean (AM-GM) Inequality.
For I1(ω): The AM-GM inequality for two positive numbers x and y with positive weights

wx and wy (wx + wy = 1) states:

xwxywy ≤ wxx+ wyy

Setting x = cR1 , y = cK1 , wx = 1− λ̃, and wy = λ̃:

(cR1 )
1−λ̃(cK1 )

λ̃ ≤ (1− λ̃)cR1 + λ̃cK1 = c1(ω)

Therefore, the ratio I1(ω) ≤ 1. Since I1(ω) is a ratio of positive quantities, I1(ω) ∈ (0, 1].
By properties of the logarithm, ln I1(ω) ≤ ln(1) = 0.

For I2(ω): Similarly, setting x = cR2 , y = cK2 , wx = aR(ω), and wy = aK(ω):

(cR2 )
aR(ω)(cK2 )

aK(ω) ≤ aR(ω)c
R
2 + aK(ω)c

K
2 = cβ2 (ω)

Therefore, the ratio I2(ω) ≤ 1. Since β(ω) > 0, and ln I2(ω) ≤ 0:

β(ω) ln I2(ω) ≤ 0

Since Wred is the sum of two non-positive terms, ln I1(ω) and β(ω) ln I2(ω):

Wred(ω;λ) = ln I1(ω) + β(ω) ln I2(ω) ≤ 0

The equality Wred(ω;λ) = 0 holds if and only if equality holds in the AM-GM inequality for
both terms. Equality holds in AM-GM if and only if all variables are equal.

ln I1(ω) = 0 ⇐⇒ cR1 = cK1

ln I2(ω) = 0 ⇐⇒ cR2 = cK2

Thus, Wred(ω;λ) = 0 iff cR1 = cK1 and cR2 = cK2 .
All welfare and policy comparisons can be re-stated in terms of (Weff ,Wred) with weights

ω. In particular, any policy that raises the transfer-backed component of cK2 tends to improve
Wred more strongly when ω > 1.
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4.2 Partial capital-market access for Keynesian households

4.2.1 Environment and new household types

In the baseline model, all Keynesian households are excluded from capital markets and can
only carry money between periods. We now allow a small fraction µ ∈ (0, λ) of Keynesian
households to access the capital market. The population shares become:

Ricardians: (1− λ), Keynesians (no access): λ− µ, Keynesians (access): µ.

We refer to the latter as hybrid Keynesians.
Hybrid Keynesians have the same labor endowment and wage wK as Keynesians, but

they can allocate savings between capital and money. They still face the same old-age CIA
requirement (for comparability), with intensity ξ ∈ [0, 1).

4.2.2 Hybrid Keynesian problem

Let (sH ,mH) denote hybrid Keynesian capital and money carried from youth to old age.
The budget constraints are:

cH1 + sH +mH = wK , (55)

cH2 =
mH

π
+ (1− τk)rs

H + T, (56)

and the CIA constraint binds:

mH

π
≥ ξcH2 , (binding in equilibrium). (57)

Under log utility, a stationary hybrid Keynesian maximizes:

ln cH1 + βK ln cH2

subject to (55)–(57).

Lemma 3 (Hybrid Keynesian reduced form under binding CIA) If (57) binds, then
the hybrid Keynesian problem can be written in terms of (cH1 , s

H) alone, with

cH2 =
(1− τk)r

1− ξ
sH +

T

1− ξ
, mH = πξcH2 . (58)

Proof. The Hybrid Keynesian household (type H) is analyzed in the stationary steady
state, so time subscripts are omitted. The household has wage income wK and receives a
lump-sum transfer T when old. The constraints are:
Young-age budget constraint : Allocation of wage income wK between consumption cH1 , cap-
ital investment sH , and real money balances mH .

cH1 + sH +mH = wK (Equation (55))
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Old-age budget constraint : Allocation of resources to consumption cH2 .

cH2 =
mH

π
+ (1− τk)rs

H + T (Equation (56))

Binding cash-in-advance (CIA) constraint : A fixed fraction ξ ∈ [0, 1) of old-age consumption
must be covered by money balances. Since the constraint is assumed to bind in equilibrium:

mH

π
= ξcH2 (Binding CIA)

Derivation of the money holdings identity (mH) The second identity is directly
derived from the binding CIA constraint by multiplying both sides by π:

mH = πξcH2

This confirms the identity mH = πξcH2 .

Derivation of the consumption identity (cH2 ) Substitute the binding CIA condition

(m
H

π
= ξcH2 ) into the old-age budget constraint (Equation (56)):

cH2 =

(
mH

π

)
+ (1− τk)rs

H + T

cH2 = ξcH2 + (1− τk)rs
H + T

Collect the consumption terms on the left-hand side:

cH2 − ξcH2 = (1− τk)rs
H + T

(1− ξ)cH2 = (1− τk)rs
H + T

Since ξ ∈ [0, 1), we have 1− ξ > 0, allowing us to divide and isolate cH2 :

cH2 =
(1− τk)r

1− ξ
sH +

T

1− ξ

This confirms the first identity in the lemma.
Since cH2 and mH are uniquely determined as linear functions of the choice variable

sH (given T and prices), the household’s problem is reduced to choosing sH (which also
determines cH1 via the young-age budget constraint).

Using (58), the young budget (55) becomes

cH1 = wK − sH − πξcH2 = wK − sH − πξ

(
(1− τk)r

1− ξ
sH +

T

1− ξ

)
.

Define

κ ≡ (1− τk)r

1− ξ
, χ ≡ 1 + πξκ, υ ≡ πξ

1− ξ
T.

Then,

cH1 = wK − χsH − υ, cH2 = κsH +
T

1− ξ
. (59)
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Proposition 4 (Closed-form hybrid Keynesian saving) Under log utility and binding
CIA, hybrid Keynesian saving in capital is

sH =
βK

1 + βK

· w
K − υ

χ
− 1

1 + βK

· T

(1− ξ)κ
(60)

and old-age consumption is

cH2 = κsH +
T

1− ξ
. (61)

Proof. The proof relies on the reduced-form consumption identities from Lemma 3 and the
definitions:

κ ≡ (1− τk)r

1− ξ
, χ ≡ 1 + πξκ, υ ≡ πξ

1− ξ
T

The hybrid Keynesian’s problem under log utility is:

max
sH

L = ln(cH1 ) + βK ln(cH2 )

subject to the constraints derived in Equation (59):

cH1 = wK − χsH − υ

cH2 = κsH +
T

1− ξ

Step 1: First-order condition (FOC): Differentiating the Lagrangian L with respect to the
control variable sH :

∂L
∂sH

=
1

cH1
· ∂c

H
1

∂sH
+ βK

1

cH2
· ∂c

H
2

∂sH
= 0

Substituting the derivatives,
∂cH1
∂sH

= −χ and
∂cH2
∂sH

= κ:

− χ

wK − χsH − υ
+ βK

κ

κsH + T
1−ξ

= 0

Rearranging gives the consumption ratio condition:

βKκc
H
1 = χcH2

Step 2: Solving for sH : Substitute the explicit forms of cH1 and cH2 into the rearranged FOC:

βKκ(w
K − χsH − υ) = χ(κsH +

T

1− ξ
)

Expand both sides:

βKκw
K − βKκχs

H − βKκυ = χκsH + χ
T

1− ξ
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Gather all terms containing sH on the right side and all other terms on the left side:

βKκw
K − βKκυ − χ

T

1− ξ
= sH(χκ+ βKκχ)

Factor the sH term:

βKκw
K − βKκυ − χ

T

1− ξ
= sHχκ(1 + βK)

Solving for sH yields the mathematically exact closed form:

sH =
βKκw

K − βKκυ − χ T
1−ξ

χκ(1 + βK)

This expression can be rewritten by splitting the numerator:

sH =
βKw

K

χ(1 + βK)
− βKυ

χ(1 + βK)
−

χ T
1−ξ

χκ(1 + βK)

sH =
βK

1 + βK

· w
K

χ
− βK

1 + βK

· υ
χ
− 1

1 + βK

· T

(1− ξ)κ

4.2.3 Capital accumulation and steady state with µ > 0

Aggregate capital carried into period t + 1 is now supplied by Ricardians and hybrid Key-
nesians:

Kt+1 = (1− λ)sRt + µsHt .

In per-worker terms,

kt+1 =
(1− λ)sR(kt) + µsH(kt)

1 + n
. (62)

A steady state k∗(µ) solves

k∗(µ) =
(1− λ)sR(k∗(µ)) + µsH(k∗(µ))

1 + n
. (63)

Proposition 5 (Small-access expansion: k∗(µ) increases for small µ) Assume (i) the
baseline steady state with µ = 0 is interior and locally stable, and (ii) hybrid Keynesian cap-
ital saving is strictly positive at µ = 0 when evaluated at k∗(0). Then for sufficiently small
µ > 0,

dk∗(µ)

dµ

∣∣∣
µ=0

> 0. (64)

Proof. The steady-state capital ratio k∗(µ) is implicitly defined by the function F (k, µ) = 0.
We rearrange the steady-state equation (63) to define F (k, µ):

F (k, µ) ≡ k − (1− λ)sR(k) + µsH(k)

1 + n
= 0
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We apply the Implicit Function Theorem (IFT) to find dk∗(µ)
dµ

∣∣∣∣
µ=0

:

dk∗

dµ
= −Fµ(k, µ)

Fk(k, µ)

where Fµ = ∂F
∂µ

and Fk =
∂F
∂k
.

Step 1: Calculate the partial derivative with respect to µ (Fµ): Differentiating F (k, µ) with
respect to µ, holding k constant:

Fµ(k, µ) =
∂

∂µ

[
k − (1− λ)sR(k) + µsH(k)

1 + n

]

Fµ(k, µ) = −0 + 1 · sH(k)
1 + n

= −sH(k)

1 + n

Evaluating this at the baseline steady state µ = 0:

Fµ(k
∗(0), 0) = −sH(k∗(0))

1 + n

Step 2: Calculate the partial derivative with respect to k (Fk): Differentiating F (k, µ) with
respect to k, holding µ constant:

Fk(k, µ) =
∂

∂k

[
k − (1− λ)sR(k) + µsH(k)

1 + n

]

Fk(k, µ) = 1− (1− λ)(sR)′(k) + µ(sH)′(k)

1 + n

Evaluating this at the baseline steady state µ = 0:

Fk(k
∗(0), 0) = 1− (1− λ)(sR)′(k∗(0))

1 + n

Step 3: Apply the Implicit Function Theorem and determine the sign: Substitute the partial
derivatives evaluated at (k∗(0), 0) into the IFT formula:

dk∗

dµ

∣∣∣∣
µ=0

= −Fµ(k
∗(0), 0)

Fk(k∗(0), 0)
= −

− sH(k∗(0))
1+n

1− (1−λ)(sR)′(k∗(0))
1+n

dk∗

dµ

∣∣∣∣
µ=0

=

sH(k∗(0))
1+n

Fk(k∗(0), 0)

Now, we determine the sign based on the assumptions:

1. Numerator sign: Assumption (ii) states that hybrid Keynesian saving in capital is
strictly positive at µ = 0: sH(k∗(0)) > 0. Since 1 + n > 1 is the gross population
growth factor, the numerator is strictly positive:

sH(k∗(0))

1 + n
> 0
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2. Denominator sign: Assumption (i) states that the baseline steady state is locally
stable. Stability in this OLG model requires that the slope of the savings function
(sR(k)) must be less than the slope of the required capital line, meaning the savings
function intersects the line kt+1 =

kt
1+n

from above. Mathematically, this condition is:

(1− λ)(sR)′(k∗(0))

1 + n
< 1

This ensures that the denominator Fk(k
∗(0), 0) is strictly positive:

Fk(k
∗(0), 0) = 1− (1− λ)(sR)′(k∗(0))

1 + n
> 0

Since both the numerator and the denominator are strictly positive, the derivative dk∗

dµ

∣∣∣∣
µ=0

is strictly positive:
dk∗(µ)

dµ

∣∣∣∣
µ=0

=
Positive

Positive
> 0

This confirms the proposition: a small increase in the fraction of Keynesians with capital
market access (µ > 0) increases the steady-state capital-labor ratio.

Allowing a small fraction of Keynesians to hold capital expands the set of savers and
weakens the baseline “saver scarcity” channel. As a result, capital deepening is stronger
and the economy is less sensitive to monetary wedges that work through liquidity-driven
intertemporal distortions.

4.3 Adding public debt and/or a consumption tax

We now add an additional government instrument and study how it changes the optimal
policy mix between inflation finance (money growth η) and capital taxation τk.

We present two variants: i) a simple one-period real public-debt instrument (risk-free,
rolled over in steady state); and ii) a proportional consumption tax τc applied to old-age
consumption. Both are kept deliberately simple to preserve tractability.

4.3.1 Government with public debt

Let the government issue real one-period bonds bt (per young agent) paying gross real return
Rb

t+1 between t and t + 1. Bonds are in zero net supply to foreigners; the only holders are
domestic households with market access (Ricardians and possibly hybrids).

Assume for robustness that bonds are perfect substitutes for capital in the household
portfolio at the margin, so in steady state

Rb = (1− τk)r. (65)

This assumption can be justified by introducing a small quadratic adjustment cost on capital
that makes bonds and capital both used; it is not essential for the qualitative results below.
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The period-t government budget constraint in real terms is:

Tt · λNt−1 +Rb
t bt−1Nt−1 = τkrtKt +

Mt −Mt−1

Pt

+ btNt + τc C
tax base
2t , (66)

where Ctax base
2t is the consumption tax base if a consumption tax is present (set τc = 0 if

absent). For the debt-only variant, set τc = 0.
In steady state, divide Equation (66) by λNt−1 and use Nt = (1 + n)Nt−1:

T +
Rb

λ
b =

1 + n

λ
b+

1 + n

λ
τkrk +

1 + n

λ

η

1 + η
m̄+

τc
λ
Ctax base

2 . (67)

Rearrange:

T =
1 + n

λ
τkrk +

1 + n

λ

η

1 + η
m̄+

τc
λ
Ctax base

2 +

(
1 + n

λ
− Rb

λ

)
b. (68)

Key channel. Debt affects transfers through the term(
1 + n−Rb

λ

)
b.

When Rb > 1 + n, servicing debt is costly and crowds out transfers; when Rb < 1 + n
it effectively provides a revenue source (a standard OLG “dynamic inefficiency” logic). In
a capital-scarce economy with high after-tax return, Rb is typically high, implying that
positive b tends to reduce T and hence worsen old-age inequality unless compensated by
other instruments.

4.3.2 Adding a consumption tax on old-age consumption

Let a proportional tax τc ∈ [0, 1) be levied on old-age consumption expenditures, so that
each old household pays τcc

i
2 and consumes (1 − τc)c

i
2 in utility. Equivalently, the budget

constraint is unchanged but utility is over net-of-tax consumption. Under log utility, this
is a simple scaling, but it changes incidence across types because old-age consumption is
financed differently across households (capital income vs. money/transfer).

Formally, replace ln ci2 by ln
(
(1 − τc)c

i
2

)
in welfare. The constant ln(1 − τc) drops out

of private decisions but not out of the government’s resources. The government collects τc
times the tax base. If the tax is applied uniformly across types, then

Ctax base
2 = (1− λ)cR2 + λcK2 (or include hybrids if present).

4.3.3 Optimal mix: characterization via marginal incidence

We now characterise how the additional instrument changes the optimal policy mix. The
cleanest statement is in terms of the effect of instruments on: i) the steady-state capital
intensity k∗; and ii) the transfer T that supports Keynesian old-age consumption.
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Let θ ≡ (η, τk, τc, b) denote instruments. Define the reduced-form mapping in steady
state:

k∗ = k∗(θ), T ∗ = T ∗(θ), G∗
2 =

cR∗
2 (θ)

cK∗
2 (θ)

.

Consider a local planner choosing θ to maximize weighted welfare W(ω;λ) subject to the
steady-state equilibrium constraints.

Proposition 6 (Local optimal-mix condition with an additional instrument) Suppose
the steady-state equilibrium is differentiable in instruments θ, and the optimum is interior.
Then at an interior optimum,

∂W
∂k∗︸︷︷︸

value of capital deepening

· ∂k∗

∂θj︸︷︷︸
efficiency incidence

+
∂W
∂T ∗︸︷︷︸

value of transfers

· ∂T ∗

∂θj︸︷︷︸
redistribution incidence

= 0, ∀j ∈ {η, τk, τc, b}.

(69)
In particular, when introducing a new instrument θz (e.g. τc or b), the optimal adjustment
of the original pair (η, τk) satisfies(

∂k∗

∂η
∂k∗

∂τk
∂T ∗

∂η
∂T ∗

∂τk

)(
dη
dτk

)
= −

(
∂k∗

∂θz
∂T ∗

∂θz

)
dθz, (70)

provided the 2× 2 Jacobian is invertible.

Proof. The Ramsey planner chooses the vector of policy instruments θ ≡ (η, τk, τc, b) to
maximize the weighted social welfare function W(θ), subject to the competitive steady-state
equilibrium constraints that determine all endogenous variables, such as capital ratio k∗ and
real transfers T ∗, as functions of θ.
Part 1: Derivation of the optimal-mix condition (Equation (69)): The social welfare function
W implicitly depends on the instruments θ through the equilibrium allocation variables. Let
z∗ denote the vector of all endogenous steady-state variables, including k∗, T ∗, and consump-
tion levels cR1 , c

R
2 , c

K
1 , c

K
2 , . . . . The set of instruments is indexed by j ∈ J ≡ {η, τk, τc, b}.

The planner’s problem is maxθ W(θ). At an interior optimum θ∗, the first-order condition
(FOC) requires that the marginal effect of changing any instrument θj must be zero:

dW
dθj

∣∣∣∣
θ∗

= 0 ∀j ∈ J

Applying the chain rule, the total derivative of welfare with respect to an instrument θj is:

dW
dθj

=
∑
l

∂W
∂z∗l

∂z∗l
∂θj

where the summation is over all endogenous variables z∗l .
Grouping the effects primarily onto k∗ (efficiency/allocation) and T ∗ (redistribution/transfer):

dW
dθj

=
∂W
∂k∗

∂k∗

∂θj
+

∂W
∂T ∗

∂T ∗

∂θj
+
∑
l∈S

∂W
∂z∗l

∂z∗l
∂θj
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where S is the set of remaining variables (e.g., consumption levels, prices).
Due to the Envelope Theorem, when the household optimizes, the direct impact of policy

changes (∂cR1 /∂θj, etc.) on utility is zero if the constraint terms are not explicitly affected.
However, here W is the sum of utilities, and the final steady-state equilibrium constraints tie
all variables together. The simplification relies on the fact that k∗ and T ∗ are the primary
channels through which policy impacts efficiency (via k∗) and distribution (via T ∗).

Setting the FOC to zero at the optimum, dW/dθj = 0, and assuming that the indirect
welfare effects via consumption levels and other variables are second-order or can be sum-
marised by the dominant effects on k∗ and T ∗, we obtain the stated optimal-mix condition:

∂W
∂k∗

∂k∗

∂θj
+

∂W
∂T ∗

∂T ∗

∂θj
= 0

This equation formalizes the trade-off: the marginal social benefit of capital deepening or
redistribution must sum to zero for every instrument j.
Part 2: Derivation of the optimal adjustment (Equation (70)): Consider the original pair
of policy instruments, θ1 = η and θ2 = τk, and a new instrument θz. At the new interior
optimum (η∗, τ ∗k , θ

∗
z), the following FOCs must hold:

dW
dη

= 0

dW
dτk

= 0

dW
dθz

= 0

We focus on the first two FOCs. Taking the total differential of the FOC for η (treating k∗

and T ∗ as the main state variables and allowing θz to vary):

d

(
dW
dη

)
=

∂

∂k∗

(
dW
dη

)
dk∗ +

∂

∂T ∗

(
dW
dη

)
dT ∗ +

∂

∂θz

(
dW
dη

)
dθz = 0

Similarly, for τk:

d

(
dW
dτk

)
=

∂

∂k∗

(
dW
dτk

)
dk∗ +

∂

∂T ∗

(
dW
dτk

)
dT ∗ +

∂

∂θz

(
dW
dτk

)
dθz = 0

The total change in the state variables dk∗ and dT ∗ due to policy changes is given by the
total differentials:

dk∗ =
∂k∗

∂η
dη +

∂k∗

∂τk
dτk +

∂k∗

∂θz
dθz

dT ∗ =
∂T ∗

∂η
dη +

∂T ∗

∂τk
dτk +

∂T ∗

∂θz
dθz

Substituting these expressions for dk∗ and dT ∗ back into the differential FOCs would
result in a complex 2 × 3 system involving second-order partial derivatives of W (Hessian
matrix).5

5See the details in Appendix D.
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However, the simpler form in Equation (70) is derived by focusing only on the direct
impact of θz on the FOCs through the marginal benefits of η and τk. For small changes dθz,
the system governing dη and dτk is linearised. The formulation is equivalent to: ∂

∂η

(
dW
dη

)
∂

∂τk

(
dW
dη

)
∂
∂η

(
dW
dτk

)
∂

∂τk

(
dW
dτk

)( dη
dτk

)
= −

 ∂
∂θz

(
dW
dη

)
∂

∂θz

(
dW
dτk

) dθz

The system presented in Equation (70) uses the elasticity of the state variables (k∗, T ∗) with
respect to the instruments, which is a common simplification when the two state variables
are assumed to dominate the policy analysis.

Assuming the relationship ∂W
∂θj

∝ ∂k∗

∂θj
and ∂W

∂θj
∝ ∂T ∗

∂θj
(i.e., that the marginal cost/benefit

of changing η and τk maps directly to the impact on k∗ and T ∗), then the linear system (70)
describes how the original instruments must adjust to keep k∗ and T ∗ constant when the
new instrument θz is introduced. In the context of Ramsey policy, this system describes how
the marginal social benefits of η and τk must be adjusted to maintain optimality.

The matrix form is mathematically a direct representation of totally differentiating the
FOCs for the (η, τk) problem with respect to all three variables (η, τk, θz), assuming that
the impact on welfare is dominated by the effects on k∗ and T ∗. Thus, the mathematical
formulation in Equation (70) is for linearizing the adjustment required at the optimum,
provided the underlying Jacobian (Hessian matrix) is invertible for η and τk.

Concrete incidence in this model. The baseline model already documents that typically
∂k∗/∂η < 0 and ∂k∗/∂τk > 0, while ∂G∗

2/∂η > 0 and ∂G∗
2/∂τk < 0 under the baseline rebate

rule. The new instrument modifies the transfer incidence ∂T ∗/∂θz. Specifically, i) public

debt b affects transfers through
(

1+n−Rb

λ

)
b in Equation (68). When Rb > 1 + n, higher b

reduces T ∗; thus, holding the welfare weights fixed, the planner tends to substitute away
from b and toward capital taxation (or away from inflation finance) to preserve transfers;
and ii) a consumption tax τc raises resources proportionally to the tax base. If the base is
old-age consumption, it tends to be relatively large when transfers are large, so τc becomes a
direct tool to finance transfers without relying on inflation. This weakens the need for high
η (inflation tax) and may allow lower η at a given redistribution target.

4.3.4 A sharp corollary: when a consumption tax dominates inflation finance for redistri-
bution

We now formalise the basic message in a local comparison.

Assumption 1 (Local separability of incidence) In a neighbourhood of the baseline steady
state, the effect of η on welfare operates mainly through (k∗, T ∗), and the direct utility effect
of changing η holding (k∗, T ∗) fixed is second-order.

This assumption is satisfied in the model under log utility with CIA binding, because
η enters primarily through π which affects money holdings and therefore the intertemporal
wedge, and this wedge matters for equilibrium allocations via savings and transfers.
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Corollary 1 (Introducing τc reduces the optimal reliance on η) Suppose Equation (68)
applies with b = 0, and the consumption tax base is proportional to aggregate old-age con-
sumption. If ∂T ∗/∂τc > 0 and ∂k∗/∂τc is small relative to |∂k∗/∂η|, then at an interior
optimum, introducing τc reduces the optimal money growth rate η (locally):

dτc > 0 ⇒ dη < 0,

holding other primitives fixed.

Proof. The optimal policy adjustment (dη, dτk) in response to a change in the consumption
tax dτc is governed by the matrix system:

J

(
dη
dτk

)
= −

(
kτc
Tτc

)
dτc where J ≡

(
kη kτk
Tη Tτk

)
For clarity, the notation used is: kx ≡ ∂k∗

∂x
and Tx ≡ ∂T ∗

∂x
.

Step 1: Apply Cramer’s rule: To find the change in the optimal inflation rate (dη) with
respect to dτc, we apply Cramer’s rule to the system:

dη =
1

det J
det

(
−dτc

(
kτc kτk
Tτc Tτk

))
Since −dτc is a common factor in the right-hand side column vector, we pull it out:

dη = − dτc
det J

det

(
kτc kτk
Tτc Tτk

)
Expanding the determinant:

dη = − dτc
det J

(kτcTτk − kτkTτc)

The derivative of the optimal inflation rate with respect to the consumption tax is:

dη

dτc
= −kτcTτk − kτkTτc

det J

Step 2: Sign analysis based on assumptions : The sign of dη
dτc

is determined by the signs of
the numerator and the denominator, based on the established comparative statics:

1. Baseline Jacobian elements (from Proposition 1):

• kη =
∂k∗

∂η
< 0 (Higher inflation reduces capital).

• kτk = ∂k∗

∂τk
> 0 (Higher capital tax increases capital due to the income effect).

2. Transfer incidence elements :

• Tη =
∂T ∗

∂η
> 0 (Higher inflation increases seigniorage, boosting transfers).
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• Tτk = ∂T ∗

∂τk
> 0 (Higher capital tax increases capital tax revenue, boosting trans-

fers).

• Tτc = ∂T ∗

∂τc
> 0 (Introducing a consumption tax raises revenue that is rebated as

transfers).

3. Key assumption for the corollary :

• The effect of τc on capital is small: |kτc| = |∂k∗/∂τc| ≈ 0.

Step 3: Evaluate the numerator : The numerator term is: N = kτcTτk − kτkTτc . Applying the
small effect assumption (kτc ≈ 0):

N ≈ (0 · Tτk)− (kτkTτc) = −kτkTτc

Substituting the signs:
N ≈ −( kτk︸︷︷︸

>0

Tτc︸︷︷︸
>0

) < 0

The numerator is negative.
Step 4: Evaluate the denominator (det J): The Jacobian determinant is: det J = kηTτk −
kτkTη. Substituting the signs:

det J = ( kη︸︷︷︸
<0

Tτk︸︷︷︸
>0

)− ( kτk︸︷︷︸
>0

Tη︸︷︷︸
>0

) = (Negative)− (Positive)

Since both terms are negative, the overall determinant det J is strictly negative:

det J < 0

Note: The local stability of the optimum typically implies det J > 0 for a minimization
problem (second-order condition). However, here W is being maximized, and the stability
of the optimum (η∗, τ ∗k ) requires that the Hessian matrix of W be negative definite, which
does not directly translate to the sign of det J here unless further assumptions are made on
the cross-partials. But, if we assume the stated signs based on Proposition 1 are correct, the
expression for det J is unambiguously negative.
Step 5: Final sign of dη/dτc:

dη

dτc
= −Numerator

det J
= −≈ Negative

Negative
= −(Positive) < 0

Therefore, based on the assumption that the consumption tax has a minimal effect on capital
accumulation (kτc ≈ 0), introducing τc reduces the optimal money growth rate η (i.e., dη

dτc
<

0). This is because the consumption tax provides an alternative, non-distortionary (in terms
of portfolio choice) source of redistribution revenue, allowing the planner to rely less on the
inflation tax (η).

A small consumption tax can raise revenues in a way that does not erode money balances
directly. That means the government can finance redistribution with less reliance on infla-
tionary finance. In this model, that tends to protect capital accumulation (because lower η
relaxes the CIA wedge) and to improve old-age inequality for a given transfer target.
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4.4 Discussion: What changes, and what does not

The three robustness exercises deliver a consistent message. First, changing welfare weights
alters the normative ranking of redistributive policies but does not overturn the key pos-
itive incidence channels: inflation finance remains relatively regressive in the presence of
cash/liquidity requirements, while transfer-financed instruments remain equalising. Second,
allowing a small fraction of Keynesians to access capital markets strengthens capital ac-
cumulation and weakens (but does not remove) the baseline saver-scarcity channel. This
tends to dampen the sensitivity of k∗ to monetary distortions, but the distributional effects
of inflation via real money balances and transfers remain. Third, adding a simple debt or
consumption-tax instrument shifts the optimal mix by providing alternative fiscal capacity.
Debt is beneficial for redistribution only in environments with low effective servicing cost rel-
ative to population growth. A consumption tax is a direct and robust substitute for inflation
finance, because it raises resources without taxing cash balances through inflation.

In short, the model’s main trade-offs are robust. In particular, heterogeneity plus liquid-
ity wedges create a policy environment in which the composition of financing instruments
matters sharply for both efficiency (capital deepening) and equity (old-age consumption
inequality).

5 Conclusion

This paper studies a simple but policy-relevant question: when some households can save in
capital while others can only save in money, and when a transactions (cash-in-advance) need
forces at least part of retirement consumption to be financed with cash, what is the right
mix between inflationary finance and explicit capital taxation? The model’s answer is clear.
In a segmented economy, inflation is not only an efficiency wedge; it is also a distributional
instrument with sharp incidence.

The main positive results can be summarized in two comparative-static statements. First,
higher money growth (higher steady-state inflation) reduces the long-run capital stock when
the cash requirement binds. Inflation raises the effective liquidity cost of old-age consump-
tion and, through general equilibrium, compresses saving and capital deepening. Second,
inflation tends to raise old-age consumption inequality because the financially constrained
rely more heavily on money and transfers, while unconstrained households can buffer with
capital income. By contrast, an increase in the capital income tax that is rebated to con-
strained retirees is progressive and, in this environment, can even raise the steady-state
capital stock: the transfer-and-liquidity channel can dominate the standard substitution ef-
fect. The quantitative exercises make these mechanisms visible: moving along the inflation
dimension pushes the economy toward lower capital intensity and higher old-age inequality,
while moving along the capital-tax dimension pushes toward higher capital intensity and
lower inequality.

These results translate into a simple Ramsey-policy message. When the planner places
at least moderate weight on the welfare of financially constrained households, the optimal
policy uses a strictly positive capital income tax and a finite, interior inflation rate. Deflation
is not optimal because it forgoes seigniorage that can finance transfers, but very high infla-
tion is also not optimal because it destroys capital accumulation and worsens distributional
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outcomes. Optimal policy therefore reflects a transparent trade-off: the government uses
some inflationary finance, but relies more heavily on explicit fiscal instruments to achieve
redistribution.

The model’s policy implications are practical and directly tied to the incidence mecha-
nisms. First, treat inflation as a blunt and often regressive redistribution tool in cash-reliant,
financially segmented economies. When a sizable group saves mainly through money, higher
inflation erodes their lifetime resources disproportionately. A policy regime that tolerates
elevated trend inflation to fund transfers risks both lower capital deepening and higher old-
age inequality. The priority should be low and predictable inflation, especially in settings
where cash (or cash-like assets) remains central for retirement consumption and precaution-
ary saving.

Second, if redistribution toward liquidity-constrained retirees is an objective, finance it
primarily with explicit taxes rather than seigniorage. A capital income tax whose proceeds
are transparently rebated to the constrained group is progressive in this environment and
can be less damaging to long-run accumulation than inflationary finance. The key is cred-
ibility and clarity: explicit tax-and-transfer systems make incidence visible and reduce the
temptation to use surprise inflation.

Third, add fiscal capacity that can substitute for inflationary finance. When available,
broad-based consumption taxation can provide a direct revenue source to fund transfers
without taxing cash balances through inflation. In the model, introducing such a tax reduces
the optimal reliance on money growth. A related implication is that redistribution should not
be tied mechanically to debt issuance: when debt service is expensive relative to population
growth, debt crowds out transfers and pushes the government back toward distortionary
instruments.

Fourth, reduce the underlying liquidity wedge over time. Policies that lower the cash
requirement for old-age consumption—financial inclusion, payment-system modernization,
and safe access to interest-bearing transaction accounts—shrink the mechanism that makes
inflation particularly costly. Even small expansions in capital-market access for constrained
households reduce the economy’s sensitivity to inflation distortions and improve the robust-
ness of policy design.

The paper is intentionally stylized to keep incidence transparent and the equilibrium ob-
jects tractable. Several extensions are natural. One is to introduce nominal public debt and
richer portfolio choice so that inflation redistributes through both money and bond positions.
Another is to allow for endogenous participation in asset markets and an explicit banking
or intermediation sector that governs access to capital. A third is to study transitional
dynamics and welfare along the transition, not only in the stationary steady state. These
extensions would be useful for quantitative policy evaluation, but the core lesson is likely
to survive: when saving opportunities differ across households and liquidity needs bind, the
composition of public finance matters as much as the level of public resources.

In sum, the model provides a clear benchmark for thinking about monetary-fiscal design
in segmented economies. Inflationary finance can fund transfers, but it is a costly and poorly
targeted way to do so. A policy mix that keeps inflation low and uses explicit, progressive
fiscal instruments to support constrained households is more likely to deliver both higher
long-run capital intensity and a more equal distribution of old-age consumption.
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Appendix

A Ricardian Household Problem under Binding CIA

This appendix shows in detail how the Ricardian household’s problem can be reduced to a
choice over (cR1t, st) when the cash–in–advance constraint binds, and how money holdings are
then recovered from the CIA condition and the pricing equation for money.

A.1 Original problem in real terms

Fix a period t and suppress the time subscripts where this does not create confusion. The
Ricardian household born in period t chooses:

(cR1 , c
R
2 ,m

R, s) ≥ 0

to maximize:
UR = u(cR1 ) + βRu(c

R
2 ) (A.1)

subject to the real budget constraints:

cR1 +mR + s = wR, (A.2)

cR2 =
MR

Pt+1

+ (1− τk)rt+1s, (A.3)

and the cash–in–advance (CIA) constraint:

MR

Pt+1

≥ ξcR2 , (A.4)

where mR ≡ MR/Pt denotes real money balances carried from t to t + 1, and ξ ∈ (0, 1) is
the required money share of old–age consumption.

Define gross inflation πt+1 ≡ Pt+1/Pt. Then,

MR

Pt+1

=
MR/Pt

Pt+1/Pt

=
mR

πt+1

,

so Equations (A.3) and (A.4) can be written in purely real terms as:

cR2 =
mR

πt+1

+ (1− τk)rt+1s, (A.5)

mR

πt+1

≥ ξcR2 . (A.6)

In what follows the agent takes (wR, rt+1, πt+1, τk) as given.
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A.2 Binding CIA and elimination of money

We assume that the nominal interest rate is strictly positive in equilibrium, so holding money
strictly above the minimum required by the CIA constraint is never optimal. As a result,
the CIA constraint binds:

mR

πt+1

= ξcR2 . (A.7)

Combining Equations (A.5) and (A.7) yields:

cR2 = ξcR2 + (1− τk)rt+1s ⇒ (1− ξ)cR2 = (1− τk)rt+1s, (A.8)

so

cR2 =
(1− τk)rt+1

1− ξ
s. (A.9)

Given any choice of s, old–age consumption cR2 is pinned down by Equation (A.9). Using
Equation (A.7), real money balances are then:

mR = πt+1ξc
R
2 = πt+1ξ

(1− τk)rt+1

1− ξ
s. (A.10)

Substituting Equation (A.10) into the young–age budget constraint (A.2) gives:

cR1 + s+ πt+1ξ
(1− τk)rt+1

1− ξ
s = wR. (A.11)

Collecting terms in s,

cR1 = wR −
[
1 + πt+1ξ

(1− τk)rt+1

1− ξ

]
s. (A.12)

Equations (A.9) and (A.12) show that once the CIA constraint binds, the only free intertem-
poral choice variable for the Ricardian agent is s. Given s, both cR1 and cR2 are determined,
and mR can be recovered from Equation (A.10).

Hence, the Ricardian’s problem can be equivalently written as choosing s ∈ [0, s̄] to
maximize:

UR(s) = u
(
cR1 (s)

)
+ βRu

(
cR2 (s)

)
, (A.13)

where

cR1 (s) = wR − χt+1s, (A.14)

cR2 (s) = κt+1s, (A.15)

and we have defined the shorthand

χt+1 ≡ 1 + πt+1ξ
(1− τk)rt+1

1− ξ
, (A.16)

κt+1 ≡
(1− τk)rt+1

1− ξ
. (A.17)

The upper bound s̄ is determined by the requirement cR1 (s) ≥ 0.
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A.3 First–order condition and Euler equation

Differentiating Equation (A.13) with respect to s and using Equations (A.14)–(A.15) yields:

dUR(s)

ds
= u′(cR1 (s)) dcR1ds + βRu

′(cR2 (s)) dcR2ds = −χt+1u
′(cR1 )+ βRκt+1u

′(cR2 ) . (A.18)

An interior optimum s⋆ > 0 satisfies:

−χt+1u
′(cR1 )+ βRκt+1u

′(cR2 ) = 0, (A.19)

or
u′(cR1 ) = βR

κt+1

χt+1

u′(cR2 ) . (A.20)

Using the definitions (A.16) and (A.17), we can rewrite

κt+1

χt+1

=

(1− τk)rt+1

1− ξ

1 + πt+1ξ
(1− τk)rt+1

1− ξ

. (A.21)

This ratio is the effective relative price of future consumption cR2 in terms of current con-
sumption cR1 when the agent must finance a fraction ξ of future consumption with money.

In the main text we focus on the simpler version of the Euler condition that uses the
mapping from s to cR2 in Equation (A.9). Rearranging Equation (A.20), and cancelling χt+1

and πt+1 appropriately using the binding CIA and the fact that money is held only to satisfy
that constraint, yields the more compact intertemporal condition:

u′(cR2 ) (1− τk)rt+1

1− ξ
= β−1

R u′(cR1 ) , (A.22)

which is Equation (15) in the main text.6

A.4 Pricing equation for money and money demand

For completeness, it is useful to show how the pricing equation for money and the associated
money demand follow from the original Lagrangian formulation.

Consider the Lagrangian:

L = u(cR1 ) + βRu(c
R
2 ) + λ1

(
wR − cR1 −mR − s

)
+ λ2

( mR

πt+1

+ (1− τk)rt+1s− cR2

)
+ µ
( mR

πt+1

− ξcR2

)
, (A.23)

6The simplification from Equations (A.20) to (A.22) exploits the fact that the household never chooses to
hold more money than required by the CIA constraint and that the extra term in χt+1 exactly reflects the
cost of satisfying the CIA requirement. Once we impose that the agent is indifferent at the margin between
spending one extra unit on s or adjusting money just enough to preserve the CIA constraint, the effective
intertemporal trade–off collapses to Equation (A.22).
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where λ1, λ2 are multipliers on the young and old budget constraints, and µ ≥ 0 is the
multiplier on the CIA constraint. The FOCs for an interior solution are:

∂L
∂cR1

: u′(cR1 )− λ1 = 0, (A.24)

∂L
∂cR2

: βRu
′(cR2 )− λ2 − µ(−ξ) = 0, (A.25)

∂L
∂mR

: −λ1 + λ2
1

πt+1

+ µ
1

πt+1

= 0, (A.26)

∂L
∂s

: −λ1 + λ2(1− τk)rt+1 = 0. (A.27)

Complementary slackness for the CIA constraint implies:

µ
( mR

πt+1

− ξcR2

)
= 0.

When the CIA constraint binds, Equation (A.7) holds and µ > 0. Using (A.24) and
(A.25), we can express

λ1 = u′(cR1 ), λ2 = βRu
′(cR2 )− µξ.

Substituting these into (A.26) yields:

u′(cR1 ) =
1

πt+1

[
βRu

′(cR2 ) + (1− ξ)µ
]
, (A.28)

which is the pricing equation for money: the marginal utility cost of giving up one unit of
goods to hold money today equals the discounted marginal utility benefit of the real payoff
of money tomorrow, plus the shadow value of relaxing the CIA constraint.

Similarly, (A.27) implies:

u′(cR1 ) =
[
βRu

′(cR2 )− µξ
]
(1− τk)rt+1. (A.29)

Combining Equations (A.28) and (A.29), using the binding CIA condition to eliminate µ,
and rearranging terms yields the compact Euler equation (15) in the main text.

Finally, using Equations (A.7) and (A.9), the money demand of a Ricardian household
in period t can be written as:

mR
t = πt+1ξc

R
2,t+1 = πt+1ξ

(1− τk)rt+1

1− ξ
st. (A.30)

This is the expression used in the main text when we state that, once the CIA constraint is
imposed, we can express the Ricardian problem in terms of (cR1t, st) alone and recover money
holdings from the CIA condition and the pricing equation for money.
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B Derivation of the Steady–State Inflation Rate and ϕ(·)

This section derives the steady–state inflation rate π∗ used in Equation (33) of the main text
and makes explicit the term

ϕ(λ, βR, βK , ξ).

We show that, under our baseline notion of a stationary steady state with constant real
money balances per young agent, this term collapses to ϕ ≡ 1, so that

π∗ =
1 + η

1 + n

exactly. The parameters (λ, βR, βK , ξ) affect the level and composition of real money demand
but not the steady–state inflation rate itself.

B.1 Money supply, population, and real balances

Recall that the nominal money stock follows:

Mt = (1 + η)Mt−1, (B.1)

with constant gross money growth factor 1 + η > 0. Population evolves according to:

Nt+1 = (1 + n)Nt, (B.2)

with gross population growth factor 1 + n > 0.
Let Pt denote the price level and define gross inflation

πt+1 ≡
Pt+1

Pt

.

In each period t, the young Ricardian and young Keynesian households hold real money
balances mR

t and mK
t , respectively, where

mR
t ≡ MR

t

Pt

, mK
t ≡ MK

t

Pt

.

The corresponding nominal holdings are MR
t and MK

t .
Aggregating across the young cohort in period t, total nominal money held at the end of

period t (and carried into period t+ 1) is:

Mt =
[
(1− λ)MR

t + λMK
t

]
Nt = PtNt

[
(1− λ)mR

t + λmK
t

]
. (B.3)

Define the average real money holding per young agent as:

m̄t ≡ (1− λ)mR
t + λmK

t . (B.4)

Then Equation (B.3) is simply
Mt = PtNtm̄t. (B.5)
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B.2 Stationary steady state

In the main text, a steady state is defined as a situation in which all real variables per young
agent (including capital per worker and real money balances per young agent of each type)
are constant over time. In particular,

mR
t = mR, mK

t = mK , m̄t = m̄ for all t. (B.6)

Using Equations (B.5) and (B.6), the ratio of nominal money stocks across periods is:

Mt

Mt−1

=
PtNtm̄t

Pt−1Nt−1m̄t−1

=
Pt

Pt−1

· Nt

Nt−1

· m̄t

m̄t−1

= πt(1 + n) · 1 = πt(1 + n), (B.7)

where we used Equations (B.2) and (B.6). But by the exogenous money supply rule (B.1),

Mt

Mt−1

= 1 + η. (B.8)

Equating Equations (B.7) and (B.8) gives:

1 + η = πt(1 + n) ⇒ πt =
1 + η

1 + n
. (B.9)

In steady state, πt = π∗ is constant over time, so we obtain the steady–state inflation rate:

π∗ =
1 + η

1 + n
. (B.10)

This expression is independent of the composition of money demand across types and of the
preference parameters (βR, βK) and the CIA parameter ξ. These parameters determine the
individual money demands mR and mK and hence the level of m̄, but as long as (B.6) holds,
they do not affect the ratio Mt

Mt−1
implied by equilibrium.

B.3 The role of ϕ(λ, βR, βK , ξ)

In the main text we wrote the steady–state inflation rate as:

π∗ =
1 + η

1 + n
ϕ(λ, βR, βK , ξ), (B.11)

where ϕ(·) was introduced as a compact way to allow for the possibility that the stationary
relationship between money growth, population growth, and inflation might depend on the
composition of money demand and on the tightness of the cash–in–advance constraint.

However, under the stationary steady–state definition in (B.6), the derivation above
shows that:

ϕ(λ, βR, βK , ξ) ≡ 1. (B.12)

That is, once we impose that real money balances per young agent of each type are constant
across time, the dependence of the steady–state inflation rate on (λ, βR, βK , ξ) vanishes.
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Inflation is pinned down uniquely by the difference between nominal money growth and
population growth,

π∗ =
1 + η

1 + n
,

while (λ, βR, βK , ξ) influence the level and distribution of real money balances across types,
and thus the strength of the CIA distortion and the distributional effects of inflation.

For completeness, one can view ϕ(·) as the ratio

ϕ(λ, βR, βK , ξ) ≡
m̄t

m̄t−1

, (B.13)

which measures how average real money holdings per young agent evolve over time as pref-
erences and portfolio choices respond to policy and prices. In a stationary steady state, we
have m̄t = m̄t−1, hence Equation (B.13) reduces mechanically to Equation (B.12).

In more general non–stationary environments or in models where the central bank injects
new money in a type–specific or age–specific way, the analogue of ϕ(·) need not equal one and
could depend non–trivially on (λ, βR, βK , ξ). In this paper, we restrict attention to stationary
steady states, so that Equation (B.10) holds exactly and ϕ(·) plays no independent role in
determining π∗.

C Exact Formula for Old–Age Consumption Inequality G2

This appendix derives an explicit closed–form expression for

G2 ≡
cR2
cK2

in the stationary steady state under log utility.
Throughout we assume u(c) = ln c, the CIA constraint binds for Ricardian households,

and the steady–state gross inflation rate is:

π ≡ Pt+1

Pt

=
1 + η

1 + n
, (C.1)

as shown in Appendix B.

C.1 Prices and factor incomes in steady state

Given the steady–state capital–labor ratio k, factor prices are:

r = αkα−1(1− λ)γ1λγ2 , (C.2)

wR = γ1k
α(1− λ)γ1−1λγ2 , (C.3)

wK = γ2k
α(1− λ)γ1λγ2−1. (C.4)

All objects in what follows are steady–state values.
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C.2 Ricardian old–age consumption cR2 in closed form

Ricardians choose capital saving s and money balances mR when young subject to:

cR1 + s+mR = wR,

and when old

cR2 =
mR

π
+ (1− τk)rs,

with binding CIA
mR

π
= ξcR2 . (C.5)

Combining the old budget constraint with Equation (C.5) gives:

(1− ξ)cR2 = (1− τk)rs ⇒ cR2 = κs, κ ≡ (1− τk)r

1− ξ
. (C.6)

Binding CIA also implies
mR = πξcR2 = πξκs. (C.7)

Substituting Equation (C.7) into the young budget yields:

cR1 = wR − χs, χ ≡ 1 + πξκ.

Under log utility, the Ricardian chooses s to maximize:

ln(wR − χs) + βR ln(κs).

The first–order condition gives:

s =
βR

1 + βR

· w
R

χ
=

βR

1 + βR

· wR

1 + πξκ
. (C.8)

Combining Equations (C.6) and (C.8) yields a closed form for Ricardian old–age consump-
tion:

cR2 = κs =
βR

1 + βR

· κ

1 + πξκ
wR =

βR

1 + βR

·
(1−τk)r
1−ξ

1 + πξ (1−τk)r
1−ξ

wR. (C.9)

C.3 Keynesian old–age consumption cK2 in closed form

Keynesians can only save in money. Their constraints are:

cK1 +mK = wK , cK2 =
mK

π
+ T,

where T is the real lump–sum transfer paid to each old Keynesian household.
Under log utility, the Keynesian chooses mK to maximize:

ln(wK −mK) + βK ln

(
mK

π
+ T

)
.
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The first–order condition implies:

mK =
βKw

K − πT

1 + βK

, (C.10)

and therefore

cK2 =
mK

π
+ T =

βK

1 + βK

(
wK

π
+ T

)
. (C.11)

C.4 Transfer T in closed form

The government rebates: i) capital tax revenue, and ii) real seigniorage revenue to old
Keynesians.

Capital tax revenue. In period t, capital tax revenue is τkrK. With K = kL and
L = Nt = (1 + n)Nt−1, revenue per old Keynesian (there are λNt−1 old Keynesians) is:

T (k) =
τkrK

λNt−1

=
1 + n

λ
τkrk. (C.12)

Seigniorage revenue. Real seigniorage in period t is:

S =
Mt −Mt−1

Pt

.

Using Mt = (1 + η)Mt−1 gives S = η
1+η

Mt

Pt
. Moreover, aggregate real money held by the

young at the end of t is:

Mt

Pt

= Ntm̄, m̄ ≡ (1− λ)mR + λmK .

Thus
S =

η

1 + η
Ntm̄ =

η

1 + η
(1 + n)Nt−1m̄,

and seigniorage per old Keynesian equals

T (s) =
S

λNt−1

=
1 + n

λ
· η

1 + η
m̄. (C.13)

Money demand components. Binding CIA implies mR = πξcR2 (from Equation (C.5)),
hence

mR = πξcR2 . (C.14)

Keynesian money demand is Equation (C.10). Therefore

m̄ = (1− λ)πξcR2 + λ
βKw

K − πT

1 + βK

. (C.15)
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Transfer fixed point and solution. Total transfer per old Keynesian is:

T = T (k) + T (s) =
1 + n

λ

[
τkrk +

η

1 + η
m̄

]
. (C.16)

Substituting Equation (C.15) into Equation (C.16) and solving for T yields the closed form:

T =

1 + n

λ
τkrk +

1 + n

λ

η

1 + η

[
(1− λ)πξcR2 + λ

βKw
K

1 + βK

]
1 + (1 + n)

η

1 + η

π

1 + βK

. (C.17)

Expression (C.17) is explicit given (k, r, wK , π, cR2 ), and cR2 is explicit from Equation (C.9).

C.5 Exact closed form for G2

By definition,

G2 =
cR2
cK2

.

Using Equation (C.11),

G2 =
cR2

βK

1+βK

(
wK

π
+ T

) =
1 + βK

βK

· cR2
wK

π
+ T

. (C.18)

Substituting the explicit expressions (C.9) and (C.17) into (C.18) gives the exact formula:

G2 =
1 + βK

βK

·

βR

1 + βR

·
(1−τk)r
1−ξ

1 + πξ (1−τk)r
1−ξ

wR

wK

π
+

1 + n

λ
τkrk +

1 + n

λ

η

1 + η

[
(1− λ)πξcR2 + λ

βKw
K

1 + βK

]
1 + (1 + n)

η

1 + η

π

1 + βK

. (C.19)

In Equation (C.19), cR2 inside the numerator of the transfer term is given by Equation (C.9),
and (r, wR, wK) are given by Equations (C.2)–(C.4). Finally, π is given by Equation (C.1).
Therefore G2 is a fully explicit function of

(λ, γ1, γ2, α, βR, βK , ξ, η, n, τk)

once the steady–state capital–labor ratio k is pinned down by the model’s steady–state
capital accumulation condition (derived in the main text).

D Derivation of the Full Hessian-Based FOC System

The Ramsey planner chooses the vector of instruments θ = (η, τk, θz) to maximize the welfare
function W(θ) subject to equilibrium constraints. Let k∗ (capital-labor ratio) and T ∗ (real
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lump-sum transfer) be the key endogenous steady-state variables that summarize the effects
of policy on efficiency and redistribution, respectively.

The optimization problem is:
max
η,τk

W(η, τk, θz)

where W(η, τk, θz) ≡ W(k∗(η, τk, θz), T
∗(η, τk, θz), θz). We treat the third instrument θz as

an exogenous parameter that influences the optimum (η∗, τ ∗k ).

D.1 First-order conditions (FOCs)

At the interior optimum, the two FOCs with respect to η and τk must be satisfied:

dW
dη

= 0 (D.1)

dW
dτk

= 0 (D.2)

Applying the chain rule (and suppressing the dependence of other variables on k∗ and T ∗

for clarity, as per the typical envelope argument where the effects are dominated by the two
largest equilibrium effects):

dW
dη

=
∂W
∂k∗

∂k∗

∂η
+

∂W
∂T ∗

∂T ∗

∂η
+

∂W
∂η

∣∣∣∣
direct

= 0

dW
dτk

=
∂W
∂k∗

∂k∗

∂τk
+

∂W
∂T ∗

∂T ∗

∂τk
+

∂W
∂τk

∣∣∣∣
direct

= 0

Note that ∂W
∂θj

∣∣∣∣
direct

includes effects not mediated through k∗ or T ∗, such as the direct effect

of τk on capital income or η on inflation/seigniorage revenue.

D.2 Total differential of the FOCs

To find how the optimal η∗ and τ ∗k change when θz changes, we take the total differential of
the system of FOCs (Equations (D.1) and (D.2)). Let J1 =

dW
dη

and J2 =
dW
dτk

.
The total differential of J1 = 0 is:

dJ1 =
∂J1
∂η

dη +
∂J1
∂τk

dτk +
∂J1
∂θz

dθz = 0

The total differential of J2 = 0 is:

dJ2 =
∂J2
∂η

dη +
∂J2
∂τk

dτk +
∂J2
∂θz

dθz = 0

We can rewrite this as a matrix system where the left-hand side contains the unknown
policy adjustments (dη, dτk) and the right-hand side contains the forcing terms due to dθz:(

∂2W
∂η2

∂2W
∂η∂τk

∂2W
∂τk∂η

∂2W
∂τ2k

)(
dη
dτk

)
= −

(
∂2W
∂η∂θz
∂2W

∂τk∂θz

)
dθz
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D.3 Expansion of the terms (the 2× 3 system)

To expose the underlying complexity involving the Jacobian matrix of the equilibrium and
the Hessian matrix of the welfare function, we expand the terms ∂2W

∂θi∂θj
.

The general structure of the second derivative ∂J1
∂η

= ∂2W
∂η2

involves three types of terms:

i) Hessian terms (second derivatives of W with respect to state variables k∗ and T ∗); ii)
Jacobian terms (first derivatives of state variables ∂k∗

∂η
and ∂T ∗

∂η
); and iii) Mixed partials (first

derivatives of W with respect to state variables multiplied by second derivatives of state
variables).

For clarity, let Jij ≡ ∂2W
∂θi∂θj

. The elements of the system are:

Self-adjustment term (J11 =
∂2W
∂η2

):

J11 =
∂

∂η

(
∂W
∂k∗

∂k∗

∂η
+

∂W
∂T ∗

∂T ∗

∂η
+

∂W
∂η

∣∣∣∣
direct

)

J11 =
∂2W
∂(k∗)2

(
∂k∗

∂η

)2

+ 2
∂2W

∂k∗∂T ∗

(
∂k∗

∂η

∂T ∗

∂η

)
+

∂W
∂k∗

∂2k∗

∂η2

+
∂2W
∂(T ∗)2

(
∂T ∗

∂η

)2

+
∂W
∂T ∗

∂2T ∗

∂η2
+

∂2W
∂k∗∂η

∂k∗

∂η
+

∂2W
∂T ∗∂η

∂T ∗

∂η
+

∂2W
∂η2

∣∣∣∣
direct

(The derivation for J22 =
∂2W
∂τ2k

is symmetric, replacing η with τk).

Cross-adjustment term (J12 =
∂2W
∂η∂τk

):

J12 =
∂

∂τk

(
∂W
∂k∗

∂k∗

∂η
+

∂W
∂T ∗

∂T ∗

∂η
+

∂W
∂η

∣∣∣∣
direct

)

J12 =
∂2W
∂(k∗)2

(
∂k∗

∂η

∂k∗

∂τk

)
+

∂2W
∂T ∗∂k∗

(
∂T ∗

∂η

∂k∗

∂τk
+

∂k∗

∂η

∂T ∗

∂τk

)
+

∂W
∂k∗

∂2k∗

∂η∂τk
+

∂2W
∂T ∗∂τk

∂T ∗

∂η
+

∂W
∂T ∗

∂2T ∗

∂η∂τk
+

∂2W
∂η∂τk

∣∣∣∣
direct

Forcing term (J1θz =
∂2W
∂η∂θz

):

J1θz =
∂

∂θz

(
∂W
∂k∗

∂k∗

∂η
+

∂W
∂T ∗

∂T ∗

∂η
+

∂W
∂η

∣∣∣∣
direct

)

J1θz =
∂2W
∂(k∗)2

(
∂k∗

∂η

∂k∗

∂θz

)
+

∂2W
∂T ∗∂k∗

(
∂T ∗

∂η

∂k∗

∂θz
+

∂k∗

∂η

∂T ∗

∂θz

)
+

∂W
∂k∗

∂2k∗

∂η∂θz
+

∂2W
∂T ∗∂θz

∂T ∗

∂η
+

∂W
∂T ∗

∂2T ∗

∂η∂θz
+

∂2W
∂η∂θz

∣∣∣∣
direct

(The derivation for J2θz =
∂2W

∂τk∂θz
is symmetric, replacing η with τk).

52



Pan: Who Pays the Inflation Tax

D.4 The full 2× 3 system

The completed system describing the optimal policy adjustment (dη, dτk) in response to the
perturbation dθz is: (

J11 J12
J21 J22

)(
dη
dτk

)
= −dθz

(
J1θz
J2θz

)
where J21 = J12 by the symmetry of the Hessian of W (assuming sufficient differentiability).

This matrix equation is the rigorous representation of the system and, as noted, involves
not just the Jacobian of the state variables (first partial derivatives, ∂k∗

∂θj
), but also the full

Hessian matrix of the welfare function ( ∂2W
∂zi∂zj

) and second derivatives of the state variables

( ∂2k∗

∂θi∂θj
).
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